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ABSTRACT
This study investigated whether numerical processing was important for two types of
mathematical competence: arithmetical computation and mathematical reasoning.
Thousand eight hundred and fifty-seven Chinese primary school children in third
through sixth grades took eight computerised tasks: numerical processing (numerosity
comparison, digit comparison), arithmetical computation, number series completion,
non-verbal matrix reasoning, mental rotation, choice reaction time, and word rhyming.
Hierarchical regressions showed that both non-symbolic numerical processing
(numerosity comparison) and symbolic numerical processing (digit comparison) were
independent predictors of arithmetical computation but neither was a predictor of
mathematical reasoning (assessed by number series completion). These findings
suggest that the cognitive basis of mathematical performance varies depending on the
type of mathematical competence measured.
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1. Introduction

Numerical processing is the mental manipulation
of quantity information of either symbolic
numbers (e.g. Arabic digits) or non-symbolic quan-
tities (e.g. dot arrays, fingers) (Cuneo, 1982; Tudus-
ciuc & Nieder, 2007; Turconi, Jemel, Rossion, &
Seron, 2004). The relationship between numerical
processing (symbolic or non-symbolic) and math-
ematical performance has been extensively
explored in the field of mathematical cognition,
but the results have been somewhat mixed.
Many studies have found positive associations
between non-symbolic numerical processing and
mathematical performance for children (e.g.
Bonny & Lourenco, 2013; Butterworth, 2005; Chen
& Li, 2014; Fazio, Bailey, Thompson, & Siegler,
2014; Halberda, Ly, Wilmer, Naiman, & Germine,
2012; Halberda, Mazzocco, & Feigenson, 2008;
Inglis, Attridge, Batchelor, & Gilmore, 2011;
Landerl, Bevan, & Butterworth, 2004; Landerl &
Kölle, 2009; Libertus, Feigenson, & Halberda, 2011,
2013; Mazzocco, Feigenson, & Halberda, 2011;

Mundy & Gilmore, 2009; Mussolin, Mejias, & Noël,
2010; Piazza et al., 2010). However, other studies
did not find significant relationships between
non-symbolic numerical processing and mathemat-
ical performance (e.g. Fuhs & McNeil, 2013; Hollo-
way & Ansari, 2009; Kolkman, Kroesbergen, &
Leseman, 2013; de Oliveira Ferreira et al., 2012;
Sasanguie, De Smedt, Defever, & Reynvoet, 2012;
Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013;
Sasanguie, Van den Bussche, & Reynvoet, 2012;
Soltész, Szűcs, & Szűcs, 2010; Vanbinst, Ghesquière,
& De Smedt, 2012). Similarly, symbolic numerical
processing was associated with mathematical per-
formance in many studies when overall reaction
time (RT) on the symbolic comparison task was
used (e.g. Bugden & Ansari, 2011; Castronovo &
Göbel, 2012; De Smedt, Verschaffel, & Ghesquière,
2009; Durand, Hulme, Larkin, & Snowling, 2005;
Holloway & Ansari, 2009; Kolkman et al., 2013;
Landerl et al., 2004; LeFevre et al., 2010; Mundy &
Gilmore, 2009; Rousselle & Noel, 2007; Sasanguie,
De Smedt, et al., 2012; Sasanguie et al., 2013;
Sasanguie, Van den Bussche, et al., 2012; Vanbinst
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et al., 2012), but not when the distance effects
were examined (e.g. Sasanguie, De Smedt, et al.,
2012; Sasanguie et al., 2013).

Because most previous studies did not dis-
tinguish among different mathematical domains
such as computation, mathematical concepts, and
mathematical problem-solving (e.g. Bonny & Lour-
enco, 2013; Fuhs & McNeil, 2013; Halberda et al.,
2008; Libertus et al., 2011, 2013; Mazzocco et al.,
2011; Sasanguie, De Smedt, et al., 2012; Sasanguie
et al., 2013; Sasanguie, Van den Bussche, et al.,
2012; Soltész et al., 2010), it is not clear whether
the mixed results were due to domain differences.
The question remains as to whether numerical pro-
cessing plays an important role in all mathematical
domains or only in certain types of mathematical
performance. This question is important for both
theoretical and practical reasons. Theoretically, this
question deals with the cognitive underpinnings of
mathematical performance. Results of previous
studies have been inconsistent in terms of the role
of numerical processing in mathematical perform-
ance. To clarify that literature, we believe that it is
important to distinguish between computation
and reasoning, which are two major components
of mathematical abilities. Previous research indeed
has shown that they are distinct from each other
(e.g. Liang et al., 2007; Mayer, Tajika, & Stanley,
1991; Wei, Yuan, Chen, & Zhou, 2012). Computation
emphasises a given set of arithmetic operations on
numerals, but mathematical reasoning focuses on
searching for higher-order relations among
numbers. Numerical processing may play differential
roles in arithmetical computation and mathematical
reasoning. In terms of practical significance, math-
ematics education and intervention should consider
different cognitive strategies to promote the devel-
opment of different areas of mathematics (Park &
Brannon, 2013).

1.1. Non-symbolic quantity processing

Evidence for the important role of non-symbolic
quantity processing in mathematical performance
first came from studies on children who suffered
from dyscalculia (e.g. Butterworth, 2005; Iuculano,
Tang, Hall, & Butterworth, 2008; Landerl et al.,
2004). Such children have deficits in both exact
numerical representations (e.g. Butterworth, 2005;
Landerl et al., 2004) and the approximate number
system or ANS (e.g. Feigenson, Dehaene, & Spelke,
2004; Halberda et al., 2012; Halberda et al., 2008;

Mussolin, De Volder, et al., 2010; Piazza et al.,
2010). For example, Piazza et al. (2010) observed
that the ability for numerosity comparison (a
common measure of ANS) was severely impaired
in 10-year-old children with dyscalculia, and their
scores (i.e. Weber fraction) on the non-symbolic
quantity processing task were equal to those of 5-
year-old typically developing children.

ANS has also been linked to individual differences
in mathematical performance in typically develop-
ing children (e.g. Bonny & Lourenco, 2013; Halberda
et al., 2012; Halberda et al., 2008; Inglis et al., 2011;
Libertus et al., 2011, 2013; Mazzocco et al., 2011;
Mundy & Gilmore, 2009). For example, Halberda
et al. (2008) found that 14-year-old children’s per-
formance on a dot comparison task (indexed by
Weber fraction) was correlated with scores on stan-
dardised mathematics achievement tests (Wood-
cock–Johnson calculation subtest and Test of Early
Mathematics Ability). Inglis et al. (2011) also found
a significant correlation between the Weber fraction
of numerosity comparison and scores on the calcu-
lation subtest of the Woodcock Johnson III Tests of
Achievement for children aged 7.6–9.4 years,
although the correlation was not significant for
adults aged 18–48 years. The role of numerosity
comparison in mathematical performance has even
been observed in preschoolers. Specifically, Libertus
et al. (2011) and Mazzocco et al. (2011) found that
preschoolers’ ANS performance was significantly
correlated with their mathematical ability (measured
by the Test of Early Mathematics Ability – Third
Edition or TEMA-3), even after controlling for age
and verbal skills.

Researchers have not agreed on the underlying
mechanism for the close relation between ANS
and mathematical performance. There are domain-
specific and domain-general explanations. Domain-
specific explanations emphasise the common quan-
tity processing of the ANS system and symbolic
numerical processing (e.g. Dehaene, Dehaene-Lam-
bertz, & Cohen, 1998; Gallistel & Gelman, 2000;
Gilmore, McCarthy, & Spelke, 2007; Libertus, Odic,
& Halberda, 2012; Lyons & Beilock, 2011). For
example, because of the shared quantity processing,
ANS is important for the acquisition of symbolic
numerical skills such as counting and arithmetic
(e.g. Dehaene et al., 1998; Gallistel & Gelman, 2000;
Gilmore et al., 2007). Similarly, ordinality is central
to both ANS (e.g. Libertus et al., 2012) and the pro-
cessing of relations among Arabic numerals (e.g. Lib-
ertus et al., 2012; Lyons & Beilock, 2011).
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Domain-general explanations have emphasised
either the role of inhibitory control in both ANS
and mathematical performance (Fuhs & McNeil,
2013; Gilmore et al., 2013) or the role of visual pro-
cessing in both (Zhou & Cheng, 2015; Zhou, Wei,
Zhang, Cui, & Chen, 2015). For example, Zhou et al.
(2015) found that the correlation between ANS pre-
cision and computation fluency disappeared after
controlling for the scores on a geometric figure
matching task measuring visual processing.

Not all studies, however, have found significant
correlations between ANS precision and children’s
mathematical performance (e.g. de Oliveira Ferreira
et al., 2012; Fuhs & McNeil, 2013; Holloway &
Ansari, 2009; Sasanguie, De Smedt, et al., 2012;
Sasanguie et al., 2013; Sasanguie, Van den Bussche,
et al., 2012; Soltész et al., 2010; Vanbinst et al.,
2012). For example, in a study of kindergartners
and first, second, and sixth graders, Sasanguie, De
Smedt, et al. (2012) did not find significant corre-
lations between numerosity processing and a curri-
culum-based standardised achievement test that
included 60 items covering number knowledge,
understanding of operations, arithmetic, word
problem-solving, measurement, and geometry. Van-
binst et al. (2012) also found no relation between
non-symbolic numerical processing and general
mathematics achievement (multi-digit calculation,
word problem-solving, and geometry).

Although the results as reviewed above were
mixed, a closer examination of the literature
appeared to show a pattern. That is, the studies
that showed non-significant results between ANS
precision and mathematical performance (e.g.
Sasanguie, De Smedt, et al., 2012; Sasanguie et al.,
2013; Vanbinst et al., 2012; Wei, Yuan, et al., 2012)
typically used measures of mathematical perform-
ance that were beyond computation.

1.2. Symbolic numerical quantity processing

Because mathematics is built on symbolic systems,
the connection between symbolic numerical proces-
sing and mathematics performance seems self-
evident. Evidence for the important role of symbolic
numerical quantity processing in mathematics also
first came from studies on children who suffered
from dyscalculia (e.g. De Smedt, Reynvoet, et al.,
2009; Landerl et al., 2004; Landerl & Kölle, 2009;
Rousselle & Noel, 2007). Landerl et al. (2004) found
that children with dyscalculia had a deficit in their
processing of symbolic numbers as well as

numerosity (counting), even though these children
had higher-than-average IQ, vocabulary, and
working memory. Rousselle and Noel (2007) also
found that children with mathematical disabilities
differed from typically developing children in their
symbolic numerical processing. They emphasised
the importance of accessing number meaning in
the development of mathematical ability. De
Smedt, Reynvoet, et al. (2009) explored the corre-
lations between basic number skills (number com-
parison and number reading) and single-digit
arithmetic performance in children with Velo-
Cardio-Facial Syndrome. Their results showed that
these children’s impairment in number comparison
was correlated with their poor performance in
single-digit computation.

Similar results have been obtained from typically
developing children in both cross-sectional studies
(e.g. Bugden & Ansari, 2011; Castronovo & Göbel,
2012; Durand et al., 2005; Holloway & Ansari, 2009;
Kolkman et al., 2013; Mundy & Gilmore, 2009; Sasan-
guie, Van den Bussche, et al., 2012; Vanbinst et al.,
2012) and longitudinal studies (e.g. De Smedt,
Verschaffel, et al., 2009; LeFevre et al., 2010; Sasan-
guie, De Smedt, et al., 2012; Sasanguie et al., 2013).

Nevertheless, the above studies typically focused
on arithmetical computation (De Smedt, Reynvoet,
et al., 2009; Rousselle & Noel, 2007; Zhou et al.,
2015). It is thus unclear whether symbolic numerical
quantity processing is related to mathematical pro-
cessing beyond arithmetical computation.

1.3. The current investigation

Based on the above review of the literature, both
symbolic and non-symbolic numerical quantity pro-
cessing are important for arithmetical computation,
but their role in mathematics beyond arithmetical
computation (e.g. mathematical reasoning and con-
cepts), if any, is not clear. Like arithmetical compu-
tation, mathematical reasoning is an important
aspect of children’s mathematical competence.
Mathematical reasoning, also referred to as math-
ematical problem-solving (Wechsler, 2001), typically
involves the following steps to reach resolutions to
mathematical problems: understanding the
problem, devising a plan, carrying out the plan,
and reviewing (Polya, 1957). Unlike arithmetic com-
putation that relies on the retrieval of arithmetic
facts or the application of routine procedures, math-
ematical reasoning often relies on trial and error in
the search for answers.
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Previous studies have shown a dissociation
between arithmetical computation and mathemat-
ical reasoning (e.g. Mayer et al., 1991; Nunes,
Bryant, Barros, & Sylva, 2012; Wei, Yuan, et al.,
2012). For example, Nunes et al. (2012) found that
mathematical reasoning and computation made
independent contributions to overall mathematical
achievement. In their study, mathematical achieve-
ment was assessed by two standardised tests,
referred to as Key Stage Assessments, which were
designed by the UK government. The first assess-
ment was Key Stage 2 (KS2) for sixth graders and
the second assessment was Key Stage 3 (KS3) for
ninth graders. Both tests cover a variety of aspects
of mathematics and are considered as ecologically
valid measures of mathematical achievement
(Nunes et al., 2012). As for other tests, Nunes et al.
used WISC’s Arithmetic subtest (WISC-III, Wechsler,
1992) to assess the computational ability, and the
Test of Mathematical Reasoning (Nunes, Campos,
Magina, & Bryant, 2001) to assess mathematical
reasoning. The latter test requires very simple arith-
metical computations but makes clear demands on
relational reasoning (e.g. “To make 4 good pancakes,
you need 4 spoons of flour and 6 of milk. If you want
to make 10 good pancakes, how much flour do you
need?”). A recent study of mathematical perform-
ance and its cognitive correlates (Wei, Yuan, et al.,
2012) also found that arithmetical computation
and mathematical reasoning (as measured by
number series completion) were not significantly
correlated. There is also indirect evidence from a
cross-cultural study supporting the distinction
between computation and mathematical problem-
solving in children. Mayer et al. (1991) found that
American fifth-grade students had an advantage in
arithmetic word problem reasoning, whereas their
Japanese counterparts had an advantage in
computation.

The current study examined directly the roles of
symbolic and non-symbolic numerical quantity pro-
cessing in arithmetical computation and mathemat-
ical reasoning in a large sample of Chinese children.
It was hypothesised that both non-symbolic and
symbolic numerical quantity processing would be
important for arithmetic computation, but not for
mathematical reasoning. The rationales for the
hypotheses are as follows. First, non-symbolic
numerical quantity processing includes both
domain-specific and -general processes (e.g. count-
ing, ordinality, form perception, inhibition) that are
shared with arithmetical computation. These

processes are likely to play only a very small role in
mathematical reasoning, for which spatial proces-
sing, working memory, and reading are more impor-
tant (Salthouse & Mitchell, 1990; Wei, Yuan, et al.,
2012). Second, as mentioned earlier, symbolic
numerical quantity processing is the basis of arith-
metical computation, but it plays only a small part
in mathematical reasoning.

In the current study, we used the number series
completion task to assess mathematical reasoning.
Number series completion is one specific aspect of
mathematical reasoning that focuses on a search
(typically via inductive reasoning) for rules hidden
in number series. In several previous studies, the
number series completion task was included as an
important part of measures of mathematical abilities
(e.g. Inglis et al., 2011; Wei, Yuan, et al., 2012; Wood-
cock, McGrew, & Mather, 2001). For example, it is a
subset of Woodcock–Johnson III math achievement
test used to measure mathematical reasoning. This
task has also been used as a part of some intelli-
gence batteries (e.g. Hayslip, Maloy, & Kohl, 1995;
Redick, Unsworth, Kelly, & Engle, 2012) or inductive
reasoning (e.g. Holzman, Pellegrino, & Glaser, 1983;
Holzman, Pelligrino, & Glaser, 1982; Jia et al., 2011;
Liang et al., 2007), both of which are highly corre-
lated with mathematical performance (Haverty, Koe-
dinger, Klahr, & Alibali, 2000). Another reason to use
the number series completion as a measure of math-
ematical reasoning is that both this test and that for
arithmetic computation use only Arabic digits to
avoid potential confounds such as verbal materials.

2. Method

2.1. Participants

A total of 1857 children (aged from 8.7 to 11.6 years)
from third to sixth grade from 14 primary schools in
the greater Beijing area took computerised tests of
cognitive abilities. One class was randomly selected
per grade per school. Table 1 shows participants’
information. This study was approved by the Insti-
tutional Review Board of Beijing Normal University,
the administrators of the departments of education
of the relevant counties, and the principals of the
schools.

2.2. Tasks

All the tasks were programmed using Web-based
applications and are available at www.dweipsy.
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com/lattice (Wei, Lu, et al., 2012; Wei, Yuan, et al.,
2012). Their reliability ranged from .71 to .96 (Wei,
Lu, et al., 2012; Wei, Yuan, et al., 2012). Adjusted
scores (total correct responses minus total incorrect
responses) were used to reduce the effect of gues-
sing in time-limited tasks (e.g. Cirino, 2011; Hedden
& Yoon, 2006; Massa & Mayer, 2006; Mayer &
Massa, 2003; Wei, Lu, et al., 2012; Wei, Yuan, et al.,
2012).

2.2.1. Numerosity comparison
This task, adapted from the Test of Early Mathemat-
ics Ability-2 (Ginsburg & Baroody, 1990), was used to
assess the ability of processing non-symbolic quan-
tity. In this task, the dots in dot arrays were black
and presented within a grey circle with a black back-
ground. Participants were asked to judge which dot
array contained more dots. They responded by
pressing “Q” with their left forefinger if the left
array contained more dots, or pressing “P” with
their right forefinger if the right side had more
dots. The number of dots in each dot array varied
from 5 to 12. The ratios of dot arrays (the number
of dots in the larger arrays over the number of
dots in the smaller arrays) ranged from 1.3 to 1.5.
Each pair of dot arrays was presented on the
screen until participants responded by pressing a
key or until 5000 ms lapsed. After each response,
there was a blank of 1000 ms. This test included 36
trials and was allotted 3 min.

We constructed the non-symbolic stimuli for the
numerosity comparison task with three rules. First,
the total surface area of all dots in a dot array

systematically varied: That is, the ratios of total
surface area of all dots between the dot arrays
with smaller number of dots and those with larger
number of dots were 2:1 (incongruent trials), 1:1
(neutral trials), and 1:2 (congruent trials) (see
Figure 1). These ratios were the same as those
used by Girelli, Lucangeli, and Butterworth (2000).
Second, the size of dots (i.e. the diameter of each
dot) in a dot array varied pseudo-randomly. Third,
the dots in a dot array were pseudo-randomly dis-
tributed within a circle.

In the design of this task, five visual properties
needed to be taken into account: total surface
area, envelope area or convex hull, item size,
density (envelope area divided by total surface),
and circumference (Gebuis & Reynvoet, 2011). We
controlled systematically the total surface area.
Since the dots in a dot array were pseudo-randomly
distributed within a circle, the envelope area or
convex hull was controlled. That is, the difference
in envelope areas of two dot arrays was not corre-
lated with their numerical distance (r = .19, p = .27)
or their ratio (r = .22, p = .19). The item size, density,
and circumference were strongly affected by the
total surface area, so they had very high correlations
with the latter, .97, −.91, and .97, respectively. These
coefficients were calculated based on differences in
these visual properties between pairs of dot arrays.
Therefore, these properties were controlled
because the total surface area was controlled.

2.2.2. Digit comparison
This task was adapted from Butterworth’s Dyscalcu-
lia Screener (Butterworth, 2003). It was used to
assess the ability of processing symbolic numerical
quantity. In this task, a series of 28 pairs of Arabic
numbers (ranging from 2 to 9) in white colour
were presented on a black screen in random order.
The numerical distance of all digit pairs ranged
from 1 to 7 (e.g. 5 vs. 6, 2 vs. 9). The larger number
of a pair of numbers was randomly assigned to the

Table 1. Participants’ information.

Grade N

Boys Girls

N Age (month) SD N Age (month) SD

3 423 235 105.2 4.5 188 104.3 4.9
4 563 306 116.3 4.3 257 116.4 5.1
5 404 211 127.8 5.1 193 127.5 4.8
6 467 244 139.2 19.8 223 137.5 9.6

Figure 1. Examples of stimuli for numerosity comparison. The ratios of total surface area of all dots, between the dot arrays
with smaller number of dots and those with larger number of dots, are 2:1 (incongruent dot arrays), 1:1 (neutral dot arrays),
and 1:2 (congruent dot arrays).
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left or right side. The 28 digit pairs were repeated
across three conditions, yielding a total of 84 trials.
For the congruent condition, one digit was bigger
than the other in both numerical quantity and phys-
ical size (e.g. 5 vs. 6). For the incongruent condition,
one digit was bigger than the other in numerical
magnitude but smaller in physical size (e.g. 5 vs. 6).
For the neutral condition, digit pairs had the same
physical size (e.g. 5 vs. 6). Participants were asked
to decide which of the two single-digit numbers
was larger in numerical quantity, while ignoring
their differences in physical size. They pressed “Q”
if the number on the left side was larger or “P” if
the number on the right was larger. Due to the
large number of trials, this test included three ses-
sions with 28 trials for each session. The three ses-
sions were administered consecutively. The formal
test was limited to 3 min.

2.2.3. Simple subtraction
Because simple addition would have been too easy
for Chinese middle- to upper-level elementary
school students, we used a subtraction task to
assess arithmetical computation ability. Participants
were given 92 subtraction equations and two
alternative answers. The minuends for all problems
were smaller than or equal to 18 and the subtrahend
was smaller than 10 (e.g. 7–2, 15–8). The incorrect
candidate answers were the correct answer plus or
minus 1, 2, or 3. Participants were asked to press
“Q” with their left forefinger if the answer on the
left was correct or “P” with their right forefinger if
the answer on the right was correct. The time limit
for the formal test was 2 min.

2.2.4. Number series completion
This task was adapted from the Cognitive Abilities
Test 3 (Smith, Fernandes, & Strand, 2001). It was
used to assess mathematical reasoning. A series of
numbers was presented in the middle of the
screen, and the participants were asked to judge
what the next number would be on the basis of a
rule underlying the series of numbers. For
example, the series of numbers “1 3 5 7” would
have 9 as the next number. Two alternative
answers are presented below the given series.
Twelve types of rules were involved in the trials
(see the Appendix). The occurrence of the rules
was random, which should increase the difficulty
to find the underlying rule. The participants were
asked to press “Q” with the left forefinger if the
correct answer was on the left or “P” with the right

forefinger if otherwise. The number series and
alternative answers remained on the screen until
the participants responded. The formal test was
limited to 4 min.

2.2.5. Non-verbal matrix reasoning
The task was adapted from Raven’s Progressive
Matrices test (Raven, 1998). This task was used to
control for the influence of general intelligence.
There were two candidate answers rather than the
original 4–6 candidate answers, because some
younger children had difficulty using the mouse or
choosing among 4 or 6 keys. Participants were
asked to identify the missing segment of a figure
according to the figure’s inherent regularity. The
participants were instructed to press “Q” with their
left forefinger if the missing segment was on the
left or “P” with their right forefinger if it was on
the right. Due to the limited time allotted for this
study, we had to shorten the task. The 80 items we
used included 44 items from Standard Progressive
Matrices (12 items from the first set and 8 items
from each one of other four sets) and 36 items
from Advanced Progressive Matrices. The formal
test was limited to 4 minutes. Shortened forms of
this test have been used in previous studies
(Bouma, Mulder, & Lindeboom, 1996; Vigneau &
Bors, 2001; Vigneau, Caissie, & Bors, 2006). Some
studies used the short-form version of the original
Raven’s Advanced Progressive Matrices test which
comprised 14 items from the original 36-item Set II
of the APM (Vigneau & Bors, 2001; Vigneau et al.,
2006) or the shortened Raven’s Standard Progressive
Matrices (Bouma et al., 1996) with 36 items rather
than 60 items. The split-half reliability of the simpli-
fied Raven Progressive Matrices used in the current
study was .83 according to our previous study
(Wei, Yuan, et al., 2012).

2.2.6. Three-dimensional mental rotation
The three-dimensional mental rotation task was
based on Shepard’s mental rotation task (Shepard
& Metzler, 1971). The task was used to assess
spatial processing ability. Studies have showed a
close relation between spatial processing and math-
ematical performance (Berg, 2008; Krajewski &
Schneider, 2009; Rohde & Thompson, 2007). The
task was used to control for the effect of spatial pro-
cessing on the relations among quantity processing,
arithmetical computation, and mathematical
reasoning. In this task, one three-dimensional
image was presented on the upper part of the
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screen and two others on the lower part. Participants
were asked to rotate mentally the upper image, and
then to choose one of the bottom figures to match
the target image after rotation. The angles for rotat-
ing images were 15°, 30°, … 345°, with a step of 15°.
This task included 180 trials. The formal test was
limited to 3 min. Each trial remained on the screen
until the participants responded by pressing either
“Q” with their left forefinger or “P” with their right
forefinger to indicate their choice.

2.2.7. Choice RT
The basic RT task was used to control for the effect of
manual response and general processing speed. We
modified the simple RT task from Butterworth’s Dys-
calculia Screener (2003) to match all other tasks in
terms of bimanual responses. In this task, a white
dot was presented on a black screen, either on the
left or right side of “+”. The participants were
asked to press “Q” with their left forefinger if the
dot appeared on the left side of “+”or “P” with
their right forefinger if it appeared on the right
side of “+”. The position where the stimulus occurred
on the screen was within 15° of visual angles. The
interstimulus interval was randomly determined
between 1500 and 3000 ms. This test had 30 trials
(15 trials for each side of “+”).

2.2.8. Word rhyming
Previous studies have found that language proces-
sing is involved in arithmetical computation (e.g.
Hecht, Torgesen, Wagner, & Rashotte, 2001;
Koponen, Aunola, Ahonen, & Nurmi, 2007; Wei,
Yuan, et al., 2012). The word-rhyming task was
used to control for the influence of language proces-
sing when we examined the relations between
quantity processing (especially symbolic numerical
processing) and mathematical performance. This
task was similar to that used by Tan et al. (2001,
2003) and has been used to assess the ability of pho-
nological processing. Two Chinese characters were
presented simultaneously on the screen. The partici-
pants had to judge if the two characters rhyme, and
to press “Q” with the left forefinger for rhyming pairs
(e.g. “门”, “人”) or “P” with the right forefinger for
non-rhyming pairs (e.g. “不”, “各”). The stimuli
remained on the screen until the participants
responded or after a lapse of 4 s. This test had 40
trials. Participants were asked to complete all trials.

2.3. Procedure

Students in the same class took the eight compu-
terised tests together in a computer classroom mon-
itored by six to seven experimenters, with each
experimenter monitoring four to six children. The
participants were given instructions and practice
trials before each task. All children took the eight
tasks in a fixed order (choice RT, numerosity com-
parison, arithmetical computation, digit comparison,
mental rotation, word rhyming, number series com-
pletion, and non-verbal matrix reasoning). We used
a fixed order to allow for group administration of
the tests and an examination of individual differ-
ences without the confound of the order effect. In
addition, we arranged the tasks from easy to difficult
to help children to adapt to the tasks. To minimise
the fatigue effect, the formal testing sessions were
limited to about 30 min and separated by 10-
minute resting periods. Participants’ responses
were automatically recorded in the computer and
sent over the Internet to a central server in the lab-
oratory. All data were collected from 12 November
to 24 December 2009.

For each task, the participants as a group were
first given instruction and practice trials before the
formal testing. In the practice session, if the partici-
pant made the right choice, the message “Correct!
Can you go faster?” would appear in the middle of
the screen. If the participant made a mistake, the
message “Wrong! Please try again”. would flash.
There were four or six trials in the practice session,
which had the same format as those used in the
formal testing. The children were told that they
could ask experimenters any questions about the
test during the practice session and were forbidden
to ask any question during the formal testing. After
all the participants completed the practice session
for a given task, the formal testing began. When
the principal experimenter said “Start”, all partici-
pants pressed any key to begin the particular
formal test. Participants were asked to respond as
quickly and accurately as possible, but they were
not told the specific amount of time allotted to
each task. After all children in a classroom com-
pleted a task, they then went on to the next task.

2.4. Data analysis

Hierarchical regression was used to investigate the
independent contribution of numerical processing
to arithmetical computation and mathematical
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reasoning. For each dependent variable, two models
were run. In the first model, basic cognitive proces-
sing (non-verbal matrix reasoning, mental rotation,
choice reaction, and word rhyming), gender, and
age were entered in the first step. Numerosity com-
parison was then entered in the second step, and
finally digit comparison was entered in the third
step. The second model reversed the second and
third steps of the first model. We then directly com-
pared their explained variance across different grade
levels in order to examine the grade-related devel-
opmental differences in the role of the two types
of numerical processing in computation.

We also conducted mediation analyses with the
bootstrapping method (Preacher & Hayes, 2008) to
quantify the differential contributions of symbolic
and non-symbolic processing to mathematical per-
formance after controlling for general cognitive
processing.

3. Results

The mean scores and standard deviations for all
eight tasks are displayed by grade level in Table 2.
The intercorrelation coefficients of all measures for
the total sample are shown in Table 3. Twenty-four
hierarchical regression analyses (2 dependent
measures × 4 grade levels × 3 types of step combi-
nations) were conducted to investigate the indepen-
dent contribution of numerical processing to
arithmetical computation and mathematical reason-
ing. Results are shown in Tables 4–6. Another set of
24 hierarchical regression analyses was conducted
to examine whether numerosity comparison in the
3 conditions (congruent, neutral, and incongruent)
predicted arithmetical computation (see Table 7).

With Bonforroni correction, the adjusted alpha of
.05 corresponded to .001 before correction.

Results showed that basic cognitive processing
(i.e. non-verbal matrix reasoning, mental rotation,
choice RT, and word rhyming) accounted for
between 18% and 34% of the variance of mathemat-
ical performance (see Table 4). As shown in Tables 5
and 6, after controlling for age, gender, and cogni-
tive processing, numerosity comparison accounted
for a significant portion of the variance of arithmeti-
cal computation (7.5% for third grade; 5.7% for
fourth grade; 4.8% for fifth grade; and 5.1% for
sixth grade) (see Table 5). After the addition of
digit comparison as a control variable, numerosity
comparison still accounted for a significant portion
of the variance of arithmetical computation, 5.4%
for third grade, 4.4% for fourth grade, 3.1% for fifth
grade, and 2.6% for sixth grade (see Table 6). Numer-
osity comparison was not a predictor of mathemat-
ical reasoning for any of the grade levels.

Digit comparison was a consistent predictor of
arithmetical computation for all grades after control-
ling for age, gender, and cognitive processing, 4.7%
for third grade, 5.2% for fourth grade, 5.2% for fifth
grade, and 7.3% for sixth grade (see Table 6). After
the addition of numerosity comparison as a
control variable, digit comparison still accounted
for a significant portion of the variance of arithmeti-
cal computation 2.6% for third grade, 3.9% for fourth
grade, 3.5% for fifth grade, and 4.8% for sixth grade
(see Table 5). Digit comparison was not a predictor
of mathematical reasoning. For third grade,
however, digit comparison RT significantly predicted
mathematical reasoning after controlling for gender,
age and basic cognitive processing (3.4%). Surpris-
ingly, the relation was positive rather than negative.

Table 2. Means and standard deviations of all the measures for the eight tasks by grade level.

Tasks

Grade 3 Grade 4 Grade 5 Grade 6

M SD M SD M SD M SD

Numerosity comparison (accuracy rate) .84 .10 .86 .09 .88 .08 .88 .07
Numerosity comparison (reaction time) 1027 249 926 206 897 187 822 178
Digit comparison (accuracy rate) .90 .06 .90 .06 .92 .05 .93 .05
Digit comparison (reaction time) 848 163 766 149 734 127 672 109
Arithmetical computation 35.0 9.8 37.6 10.2 40.7 8.0 42.8 8.3
Number series completion 7.2 6.80 8.3 6.4 10.2 6.3 11.2 6.4
Non-verbal matrix reasoning 12.6 9.5 14.9 8.8 15.7 8.6 17.1 8.8
Mental rotation 11.9 9.8 14.8 10.5 17.0 10.7 18.4 10.4
Choice reaction time (accuracy rate) .95 .08 .95 .10 .96 .08 .97 .07
Choice reaction time (reaction time) 543 148 473 154 467 186 417 134
Word rhyming (accuracy rate) .68 .17 .74 .17 .81 .14 .82 .15
Word rhyming (reaction time) 2620 730 2455 733 2494 581 2370 641

Note: The unit for RT is millisecond. For all the time-limited tasks including arithmetical computation, number series completion, non-verbal matrix
reasoning and mental rotation, the measure is the adjusted number of correct trials.
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That is, larger RT was associated with better scores
on the mathematical reasoning test.

It should be noted that the variances were not
equal for the two mathematical tests (arithmetical
computation and mathematical reasoning) used in
the current investigation. We have calculated the

coefficients of variation (CV) for both arithmetical
computation and mathematical reasoning using
the equation: CV = standard deviation/mean. The
variances were larger for mathematical reasoning
than for computation for all four grade levels.
These differences, however, could not have

Table 3. Intercorrelations (Spearman) of all measures.
Task 1 2 3 4 5 6 7 8 9 10 11

1.Numerosity comparison (accuracy rate) – – – – – – – – – – –
2.Numerosity comparison (reaction time) .23* – – – – – – – – – –
3.Digit comparison (accuracy rate) .38* .19* – – – – – – – – –
4.Digit comparison (reaction time) .05 .56* .14* – – – – – – – –
5.Arithmetical computation .30* −.12* .31* −.31* – – – – – – –
6.Number series completion .23* −.03 .27* −.06 .46* – – – – – –
7.Non-verbal matrix reasoning .23* −.05 .21* −.08* .33* .40* – – – – –
8.Mental rotation .24* −.05 .24* −.09* .30* .32* .37* – – – –
9.Choice reaction time (accuracy rate) .23* .12 .26* .04 .16* .17* .14* .11* – – –
10.Choice reaction time (reaction time) .05 .53* .07 .54* −.32* −.19* −.18* −.17* .07 – –
11.Word rhyming (accuracy rate) .24* −.17* .31* −.24* .53* .50* .36* .30* .17* −.34* –
12.Word rhyming (reaction time) .11* .24* .17* .30* −.10* .03 .03 .06 .04 .23* −12*
Note: *p < .05, corrected with Bonferroni correction method among all the correlation.

Table 4. Hierarchical regression models predicting arithmetical computation and number series completion from age, gender
(Step 1), and general cognitive processing (Step 2).

Grade Predictors

Arithmetical computation Mathematical reasoning

Step 1 Step 2 Step 1 Step 2
B (SE) B (SE) B (SE) B (SE)

3 Age −.08 (.10) −.07 (.09) .06 (.07) .07 (.07)
Gender .54 (.96) −.09 (.85) .97 (.67) .65 (.62)
Non-verbal matrix reasoning – .16 (.05) – .14 (.03)*
Mental rotation – .17 (.05)* – .09 (.03)
Choice reaction (accuracy rate) – −1.26 (5.09) – .17 (3.75)
Choice reaction (reaction time) – −.01 (.00) – .00 (.00)
Word rhyming (accuracy rate) – 17.04 (2.70)* – 8.93 (1.99)*
Word rhyming (reaction time) – .00 (.00) – .00 (.00)

R2 = .002 ΔR2 = .266* R2 = .006 ΔR2 = .175*
4 Age −.04 (.01)* −.03 (.01) .00 (.01) .01 (.01)

Gender .95 (.86) .15 (.80) .92 (.54) .39 (.49)
Non-verbal matrix reasoning – .18 (.05)* – .15 (.03)*
Mental rotation – .10 (.04) – .10 (.03)*
Choice reaction (accuracy rate) – 6.72 (3.72) – 5.35 (2.28)
Choice reaction (reaction time) – −.00 (.00) – .00 (.00)
Word rhyming (accuracy rate) – 17.94 (2.56)* – 9.47 (1.57)*
Word rhyming (reaction time) – .00 (.00) – .00 (.00)

R2 = .024 ΔR2 = .186* R2 = .005 ΔR2 = .237*
5 Age −.13 (.08) −.10 (.07) .01 (.06) .02 (.06)

Gender 2.49 (.78) .81 (.76) 1.50 (.63) .62 (.60)
Non-verbal matrix reasoning – .14 (.05) – .19 (.04)*
Mental rotation – .02 (.04) – .06 (.03)
Choice reaction (accuracy rate) – 8.59 (6.07) – .60 (4.75)
Choice reaction (reaction time) – .00 (.00) – .00 (.00)
Word rhyming (accuracy rate) – 18.36 (2.77)* – 13.48 (2.17)*
Word rhyming (reaction time) – −.00 (.00) – −.00 (.00)

R2 = .031 ΔR2 = .183* R2 = .014 ΔR2 = .228*
6 Age .02 (.02) −.00 (.02) .04 (.02) .02 (.02)

Gender 1.04 (.77) .31 (.66) .84 (.59) .19 (.50)
Non-verbal matrix reasoning – .07 (.04) – .18 (.03)*
Mental rotation – .11 (.04) – .07 (.03)
Choice reaction (accuracy rate) – 4.04 (4.96) – 3.78 (3.73)
Choice reaction (reaction time) – −.01 (.00) – −.00 (.00)
Word rhyming (accuracy rate) – 20.77 (2.51)* – 14.14 (1.89)*
Word rhyming (reaction time) – .00 (.00) – .00 (.00)

R2 = .006 ΔR2 = .302* R2 = .015 ΔR2 = .335*

Note: *p < .05, corrected with Bonferroni correction method among all the regression analyses (in Table 4–7).
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accounted for the main finding that numerical pro-
cessing was correlated with arithmetical compu-
tation (which has less variance), but not with
mathematical reasoning (which has more variance).

Hierarchical regression was also used to examine
whether numerosity comparison and digit compari-
son in three conditions (congruent, neutral, and
incongruent) predicted arithmetical computation

(see Table 7). The first and second steps were the
same as those in Table 4, and thus were not dis-
played. Table 7 only showed the R2 change (third
step). The neutral condition of numerosity compari-
son and digit comparison generally predicted arith-
metical computation for seven of the eight analyses,
except for the neutral condition of numerosity com-
parison in sixth grade. The congruent condition was

Table 5. Hierarchical regression models predicting arithmetical computation and number series completion from number
comparison after controlling for numerosity comparison and other factors (including age and gender in Step 1 and
general cognitive processing in Step 2, as shown in Table 4).

Grade Predictors

Arithmetical computation Number series completion

Step 3 Step 4 Step 3 Step 4
B (SE) B (SE) B (SE) B (SE)

3 Age −0.14 (.09) −.12 (.08) .08 (.07) .08 (.07)
Gender 0.29 (.81) .54 (.80) .74 (.63) .48 (.62)
Non-verbal matrix reasoning 0.11 (.05) .11 (.04) .14 (.04)* .14 (.03)*
Mental rotation .14 (.04) .12 (.04) .09 (.03) .07 (.03)
Choice reaction (accuracy rate) −5.73 (4.90) −5.82 (4.88) −.37 (3.80) −2.89 (3.78)
Choice reaction (reaction time) −.01 (.00)* −0.01 (.00) −.00 (.00) −.00 (.00)
Word rhyming (accuracy rate) 14.64 (2.59)* 13.05 (2.57)* 8.86 (2.01)* 9.34 (1.99)*
Word rhyming (reaction time) .00 (.00) .00 (.00) .00 (.00) .00 (.00)
Numerosity comparison (accuracy rate) 31.44 (4.59)* 26.99 (4.64)* 1.43 (3.56) 3.04 (3.60)
Numerosity comparison (reaction time) −.00 (.00) −.00 (.00) .00 (.00) −.00 (.00)
Digit comparison (accuracy rate) – 25.43 (7.38) – 5.23 (5.71)
Digit comparison (reaction time) – −.01 (.00) – .01 (.00)*

ΔR2 = .075* ΔR2 = .026* ΔR2 = .002 ΔR2 = .034*
4 Age −.03 (.01) −.03 (.01) .01 (.01) .01 (.01)

Gender .16 (.77) .32 (.76) .47 (.49) .33 (.49)
Non-verbal matrix reasoning .16 (.05) .16 (.05) .14 (.03)* .14 (.03)*
Mental rotation .08 (.04) .06 (.04) .10 (.03)* .09 (.03)*
Choice reaction (accuracy rate) 4.19 (3.63) 4.39 (3.55) 4.68 (2.30) 4.27 (2.29)
Choice reaction (reaction time) −.00 (.00) −.00 (.00) .00 (.00) −.00 (.00)
Word rhyming (accuracy rate) 15.00 (2.53)* 12.58 (2.52)* 9.76 (1.60)* 9.13 (1.63)*
Word rhyming (reaction time) .00 (.00) .00 (.00) .00 (.00) .00 (.00)
Numerosity comparison (accuracy rate) 30.72 (4.81)* 25.94 (4.82)* −.13 (3.04) −1.50 (3.12)
Numerosity comparison (reaction time) −.00 (.00) .00 (.00) .00 (.00) .00 (.00)
Digit comparison (accuracy rate) – 21.26 (7.12) – 10.20 (4.60)
Digit comparison (reaction time) – −.02 (.00)* – .00 (.00)

ΔR2 = .057* ΔR2 = .039* ΔR2 = .010 ΔR2 = .008
5 Age −.11 (.07) −.14 (.07) .01 (.06) .01 (.06)

Gender .86 (.76) .85 (.74) .58 (.61) .52 (.61)
Non-verbal matrix reasoning .14 (.04) .12 (.04) .18 (.04)* .18 (.04)*
Mental rotation .00 (.04) .00 (.03) .05 (.03) .05 (.03)
Choice reaction (accuracy rate) .16 (6.32) −3.43 (6.30) −1.75 (5.07) −3.70 (5.15)
Choice reaction (reaction time) −.00 (.00) −.01 (.00) −.00 (.00) −.00 (.00)
Word rhyming (accuracy rate) 16.90 (2.73)* 13.93 (2.75)* 12.85 (2.18)* 12.28 (2.25)*
Word rhyming (reaction time) −.00 (.00) −.00 (.00) .00 (.00) .00 (.00)
Numerosity comparison (accuracy rate) 19.28 (4.93)* 15.68 (4.90) 8.01 (3.95) 6.86 (4.00)
Numerosity comparison (reaction time) .01 (.00) .01 (.00) .00 (.00) .00 (.00)
Digit comparison (accuracy rate) – 36.99 (8.83)* – 11.92 (7.22)
Digit comparison (reaction time) – −.01 (.00) – .00 (.00)

ΔR2 = .048* ΔR2 = .035* ΔR2 = .010 ΔR2 = .007
6 Age −.01 (.02) −.00 (.02) .02 (.02) .02 (.02)

Gender .80 (.65) .78 (.63) .37 (.50) .34 (.50)
Non-verbal matrix reasoning .04 (.04) .04 (.04) .17 (.03)* .17 (.03)*
Mental rotation .08 (.03) .06 (.03) .07 (.03) .06 (.03)
Choice reaction (accuracy rate) 2.46 (4.83) 4.84 (4.67) 2.53 (3.74) 2.94 (3.76)
Choice reaction (reaction time) −.01 (.00)* −.01 (.00)* −.01 (.00) −.00 (.00)
Word rhyming (accuracy rate) 18.10 (2.46)* 15.52 (2.41)* 13.45 (1.91)* 12.99 (1.94)*
Word rhyming (reaction time) .00 (.00) .00 (.00) −.00 (.00) −.00 (.00)
Numerosity comparison (accuracy rate) 26.21 (4.66)* 18.77 (4.66)* 5.79 (3.61) 4.45 (3.75)
Numerosity comparison (reaction time) .00 (.00) .00 (.00) .00 (.00) .00 (.00)
Digit comparison (accuracy rate) – 39.75 (7.52)* – 7.89 (6.05)
Digit comparison (reaction time) – −.01 (.00)* – −.00 (.00)

ΔR2 = .051* ΔR2 = .048* ΔR2 = .012 ΔR2 = .002

Note: *p < .05, corrected with Bonferroni correction method among all the regression analyses (in Table 4–7).
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Table 6. Hierarchical regression models predicting arithmetical computation and number series completion from numerosity
comparison after controlling for number comparison and other factors (including age and gender in Step 1 and general
cognitive processing in Step 2, as shown in Table 4).

Grade Predictors

Arithmetical computation Number series completion

Step 3 Step 4 Step 3 Step 4
B (SE) B (SE) B (SE) B (SE)

3 Age −.06 (.09) −.12 (.08) .09 (.06) .08 (.07)
Gender .20 (.82) .54 (.80) .52 (.61) .48 (.62)
Non-verbal matrix reasoning .15 (.05) .11 (.04) .15 (.03)* .14 (.03)*
Mental rotation .14 (.04) .12 (.04) .08 (.03) .07 (.03)
Choice reaction (accuracy rate) −1.99 (5.03) −5.82 (4.88) −2.52 (3.74) −2.89 (3.78)
Choice reaction (reaction time) −.01 (.00) −.01 (.00) −.01 (.00) −.00 (.00)
Word rhyming (accuracy rate) 14.51 (2.66)* 13.05 (2.57)* 9.47 (1.98)* 9.34 (1.99)*
Word rhyming (reaction time) .00 (.00) .00 (.00) .00 (.00) .00 (.00)
Digit comparison (accuracy rate) 33.66 (7.53)* 25.43 (7.38) 5.85 (5.60) 5.23 (5.71)
Digit comparison (reaction time) −.01 (.00)* −.01 (.00) .01 (.00)* .01 (.00)*
Numerosity comparison (accuracy rate) – 26.99 (4.64)* – 3.04 (3.60)
Numerosity comparison (reaction time) – −.00 (.00) – −.00 (.00)

ΔR2
2
= .047* ΔR23 = .054* ΔR2

2
= .034* ΔR23 = .002

4 Age −.03 (.01) −.03 (.01) .01 (.01) .01 (.01)
Gender .11 (.78) .32 (.76) .25 (.49) .33 (.49)
Non-verbal matrix reasoning .18 (.05)* .16 (.05) .14 (.03)* .14 (.03)*
Mental rotation .07 (.04) .06 (.04) .09 (.03)* .09 (.03)*
Choice reaction (accuracy rate) 6.36 (3.63) 4.39 (3.55) 4.45 (2.28) 4.27 (2.29)
Choice reaction (reaction time) .00 (.00) −.00 (.00) .00 (.00) −.00 (.00)
Word rhyming (accuracy rate) 13.97 (2.57)* 12.58 (2.52)* 8.83 (1.61)* 9.13 (1.63)*
Word rhyming (reaction time) .00 (.00) .00 (.00) .00 (.00) .00 (.00)
Digit comparison (accuracy rate) 33.10 (7.00)* 21.26 (7.12) 11.13 (4.40) 10.20 (4.60)
Digit comparison (reaction time) −.01 (.00)* −.02 (.00)* .00 (.00) .00 (.00)
Numerosity comparison (accuracy rate) – 25.94 (4.82)* – −1.50 (3.12)
Numerosity comparison (reaction time) – .00 (.00) – .00 (.00)

ΔR2
2
= .052* ΔR23 = .044* ΔR2

2
= .014 ΔR23 = .004

5 Age −.13 (.07) −.14 (.07) .02 (.06) .01 (.06)
Gender .76 (.74) .85 (.74) .61 (.59) .52 (.61)
Non-verbal matrix reasoning .12 (.04) .12 (.04) .18 (.04)* .18 (.04)*
Mental rotation .01 (.04) .00 (.03) .05 (.03) .05 (.03)
Choice reaction (accuracy rate) 1.02 (6.24) −3.43 (6.30) −3.38 (5.01) −3.70 (5.15)
Choice reaction (reaction time) −.00 (.00) −.01 (.00) −.00 (.00) −.00 (.00)
Word rhyming (accuracy rate) 14.75 (2.79)* 13.93 (2.75)* 12.67 (2.24)* 12.28 (2.25)*
Word rhyming (reaction time) −.00 (.00) −.00 (.00) .00 (.00) .00 (.00)
Digit comparison (accuracy rate) 46.02 (8.73)* 36.99 (8.83)* 14.24 (7.01) 11.92 (7.22)
Digit comparison (reaction time) −.00 (.00) −.01 (.00) .00 (.00) .00 (.00)
Numerosity comparison (accuracy rate) – 15.68 (4.90) – 6.86 (4.00)
Numerosity comparison (reaction time) – .01 (.00) – .00 (.00)

ΔR2
2
= .052* ΔR23 = .031* ΔR2

2
= .011 ΔR23 = .006

6 Age .00 (.02) −.00 (.02) .02 (.02) .02 (.02)
Gender .37 (.63) .78 (.63) .17 (.50) .34 (.50)
Non-verbal matrix reasoning .07 (.04) .04 (.04) .18 (.03)* .17 (.03)*
Mental rotation .06 (.03) .06 (.03) .06 (.03) .06 (.03)
Choice reaction (accuracy rate) 6.55 (4.72) 4.84 (4.67) 4.03 (3.74) 2.94 (3.76)
Choice reaction (reaction time) −.01 (.00) −.01 (.00)* −.00 (.00) −.00 (.00)
Word rhyming (accuracy rate) 16.75 (2.44)* 15.52 (2.41)* 13.30 (1.93)* 12.99 (1.94)*
Word rhyming (reaction time) .00 (.00) .00 (.00) .00 (.00) −.00 (.00)
Digit comparison (accuracy rate) 50.47 (7.26)* 39.75 (7.52)* 12.04 (5.75) 7.89 (6.05)
Digit comparison (reaction time) −.01 (.00)* −.01 (.00)* .00 (.00) −.00 (.00)
Numerosity comparison (accuracy rate) – 18.77 (4.66)* – 4.45 (3.75)
Numerosity comparison (reaction time) – .00 (.00) – .00 (.00)

ΔR2
2

2 = .073* ΔR2
3
= .026* ΔR2

2
= .007 ΔR2

3
= .008

Note: *p < .05, corrected with Bonferroni correction method among all the regression analyses (in Table 4–7).

Table 7. The R2 changes in Step 3 in the hierarchical regression models predicting arithmetical computation from three types
of numerical comparison (age and gender in Step 1 and general cognitive processing in Step 2, shown in Table 4).

Grade Numerosity comparison Number comparison

Congruent Incongruent Neutral Congruent Incongruent Neutral

3 .068* .020 .051* .019 .021 .058*
4 .035* .017 .061* .029* .034* .051*
5 .042* .028 .044* .055* .022 .045*
6 .021 .045* .018 .022 .065* .038*

Note: *p < .05, corrected with Bonferroni correction method among all the regression analyses (in Table 4–7).

JOURNAL OF COGNITIVE PSYCHOLOGY 817



also a significant predictor for five of the analyses,
and the incongruent condition was a significant pre-
dictor for three analyses. Paired t-test did not show
significant differences in the amounts of explained
variances between the neutral and incongruent con-
ditions, t (7) = 1.48, p = .182.

To further quantify the differential contributions
of symbolic and non-symbolic processing to arith-
metical computation (after controlling for gender,
age, and general cognitive processing), mediation
analyses were conducted (because hierarchical
regression analyses showed that symbolic and
non-symbolic processing made no significant contri-
butions to mathematical reasoning, no mediation
analysis was conducted for mathematical reason-
ing). For the mediation analyses, the dependent

variable was the residuals of arithmetical compu-
tation after controlling for four general cognitive
processing variables (non-verbal matrix reasoning,
mental rotation, choice RT, and word rhyming) as
well as age and gender. We first tested whether
numerosity comparison mediated the relation
between digit comparison and arithmetical compu-
tation and found a partial mediation. The mediation
effect accounted for about 25.75% of the total effect
(see panel A of Figure 2). We then tested whether
digit comparison mediated the relation between
numerosity comparison and arithmetical compu-
tation. The mediating role of digit comparison was
also partial, accounting for about 25.67% of the
total effect (see panel B of Figure 2).

4. Discussion

The main goal of the current study was to test
whether non-symbolic and symbolic numerical pro-
cessing similarly contributed to two subtypes of
mathematical competence (arithmetical compu-
tation and mathematical reasoning) in a large
sample of Chinese primary school children. Children
from third to sixth grades performed numerosity and
digit comparisons, arithmetical computation,
number series completion, and other cognitive
tasks (i.e. non-verbal matrix reasoning, mental
rotation, choice RT, and word rhyming). Hierarchical
regression analyses showed that numerosity com-
parison and digit comparison made independent
contributions to arithmetical computation but not
to mathematical reasoning, after controlling for
gender, age, and scores on non-verbal matrix reason-
ing, mental rotation, choice RT, and word rhyming.

Cognitive mechanisms involved in mathematical
performance have long been a hot topic in the
field of mathematical cognition and learning. Cogni-
tive factors have been found to account for a sub-
stantial amount of variance in mathematical
performance (Praet, Titeca, Ceulemans, & Desoete,
2013; Swanson & Kim, 2007; Zhou et al., 2015). The
current study showed that 17–33% variance in arith-
metical computation and mathematical reasoning
can be accounted for by the four types of general
cognitive factors included in the current study,
namely, non-verbal matrix reasoning, mental
rotation, choice RT, and word rhyming. The
explained amount of variance was moderate prob-
ably because we did not include many other
measures of mathematics-relevant cognitive
factors such as working memory and executive

Figure 2. Mediation analyses for the differential contri-
butions of numerosity comparison and digit comparison
to arithmetical computation. The top panel (A) is for the
mediation effect of numerosity comparison on the relation
between digit comparison and arithmetical computation,
the bottom panel (B) is for the mediation effect of digit
comparison on the relation between numerosity compari-
son and arithmetical computation. Note: (1). Arithmetical
computation refers to the non-standardised residual of
arithmetical computation after controlling for general cog-
nitive processing (non-verbal matrix reasoning, mental
rotation, choice RT, and word rhyming) as well as age and
gender differences. (2). The model is constrained by the
assumption of c = ab + c’. c: direct effect of the original pre-
dictor; ab: indirect effect of the mediator, and c’: the remain-
ing (unmediated) direct effect.
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function (Fuhs & McNeil, 2013; Gilmore et al., 2013;
Swanson & Kim, 2007).

Beyond the basic cognitive factors, the roles of
non-symbolic and symbolic quantity processing in
mathematical performance have been closely exam-
ined (Butterworth, 2005; De Smedt, Janssen, et al.,
2009; Halberda et al., 2008; Holloway & Ansari,
2009; Inglis et al., 2011; Landerl et al., 2004; Piazza
et al., 2010; Rousselle & Noel, 2007). Previous
studies found inconsistent results regarding the
relations between non-symbolic numerical quantity
processing and mathematical performance,
perhaps due to the use of different measures of
mathematical performance in different studies.
According to the review by De Smedt, Noël,
Gilmore, and Ansari (2013), no study has directly
tested whether non-symbolic and symbolic numeri-
cal processing was important for some or all
domains of mathematics for children.

4.1. Relation between numerical quantity
processing and arithmetical computation

The ANS is believed to provide a basis for the acqui-
sition of symbolic numerical skills such as counting
and arithmetic (Dehaene et al., 1998; Gallistel &
Gelman, 2000; Gilmore, McCarthy, & Spelke, 2010;
Halberda et al., 2008; Piazza et al., 2010; but see But-
terworth, 2010; Noël & Rousselle, 2011). Indeed,
some of the previous studies have shown a signifi-
cant association between ANS precision and arith-
metic performance (De Smedt, Reynvoet, et al.,
2009; Halberda et al., 2008; Inglis et al., 2011; Musso-
lin, Mejias, et al., 2010; Piazza et al., 2010; Zhou et al.,
2015). This study replicated that finding with a large
sample of Chinese primary school children.

We should note that we used the dot arrays with
5–12 dots, which were within the range of Halberda
et al.’s (2008) 5–16 dots. The numerosity processing
in the current investigation is probably still closer to
the approximate representational system than the
exact representational system. Nevertheless, the
relation found in this study between numerosity
comparison and mathematical performance might
also involve the exact representational system for
the trials containing small dot arrays, such as five
dots. Future studies should separate the two types
of numerosity processing.

It is worth noting that numerosity comparison
and digit comparison made independent contri-
butions to arithmetical computation, suggesting
that they play differential roles in computation. For

example, counting could be more likely to be
involved in dot comparison, whereas the mental
number line could be more likely to be involved in
in digit comparison and arithmetical computation
(Nuerk, Weger, & Willmes, 2001; Yu et al., 2015;
Zhou, Zhao, Chen, & Zhou, 2012). Importantly, digit
comparison has been considered to be a com-
ponent of arithmetic (Butterworth, Zorzi, Girelli, &
Jonckheere, 2001).

4.2. Relation between numerical quantity
processing and mathematical reasoning

We found that non-symbolic and symbolic numeri-
cal quantity processing were not significant predic-
tors of children’s performance in mathematical
reasoning (or number series completion) after con-
trolling for basic cognitive processes and gender.
This finding extended the results of previous
studies with adults that measured mathematical
performance in terms of problem-solving, concepts,
geometry, etc. (Sasanguie, De Smedt, et al., 2012;
Sasanguie et al., 2013; Vanbinst et al., 2012; Wei,
Yuan, et al., 2012). In other words, our result con-
strained the role of numerical processing to math-
ematical computation, which involves the retrieval
of arithmetic facts and application of routine pro-
cedures in the manipulation of numerical quantity.
In contrast, mathematical reasoning focuses on the
underlying relations among particular sets of
numbers. As Geary (1994) described, mathematical
reasoning is a domain of mathematics that encom-
passes mathematical problem-solving skills, which
is more than simply applying routine procedures
and accessing numerical quantity. Problem-solving
is typically based on the four steps: understanding
the problem, designing a plan, executing the plan,
and reviewing. These steps can be applied to all
domains of problem-solving with differential
emphases on different steps. In the case of
number series completion, the most important
step is to search for hidden rules of relations
among numbers within the series with inductive
reasoning. Numerical quantity processing is typically
easy. Thus, we observed that the non-verbal matrix
reasoning, rather than numerical quantity proces-
sing, was a consistent predictor of mathematical
reasoning. Our result suggests that basic cognitive
processing is important for mathematical reasoning.

Although the current investigation showed that
numerical quantity was not associated with math-
ematical reasoning as measured with number
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series completion, we need to note that number
series completion is only one aspect of mathemat-
ical reasoning (inductive reasoning). Broader math-
ematical reasoning involves solving real-world,
practical problems covering a wide range of sub-
jects, such as time, money, and measurement.
Future study is needed to directly test the role of
basic numerical quantity processing in real-world
mathematical problem-solving.

4.3. Practical implications

The current study found independent contributions
of two types of numerical quantity processing (ANS
and basic symbolic numerical processing) to arith-
metical computation. Previous studies have shown
that the approximate and exact number systems
can be as targets for effective interventions to
promote mathematical learning (Butterworth &
Laurillard, 2010; Obersteiner, Reiss, & Ufer, 2013;
Park & Brannon, 2013; Räsänen, Salminen, Wilson,
Aunio, & Dehaene, 2009; Wilson, Revkin, Cohen,
Cohen, & Dehaene, 2006). For example, Park and
Brannon (2013) trained adults on non-symbolic
approximate arithmetic (2 dots arrays with 9–36
dots separately) over the course of 10 training ses-
sions. Results showed improved performance in
symbolic mathematics including addition and sub-
traction. As another example, Butterworth and Laur-
illard (2010) used Dots2Track program and
Dots2Digits program to train children with low
numeracy and dyscalculia. The Dots2Track helps
the learner discern the relationship between the
numerosity in a dot pattern and its representation
as a digit on a number line. Dots2Digits helps chil-
dren pair up a dot pattern with its appropriate
digit, and vice versa. They found that training had
a positive effect on children’s learning and that tea-
chers evaluated the training program positively. One
previous study directly compared the training
effects of the approximate and exact number
systems (Obersteiner et al., 2013) and found that
both types of training resulted in improved perform-
ance but there was no crossover effect. That is, the
approximate instructional approach only improved
the task relying on the approximate number rep-
resentation, and the exact instructional approach
only improved the task relying on the exact
number representation. As the authors of that
study argued, the approximate and exact number
systems may rely on distinct cognitive processing,
and both instructional approaches are needed.

In sum, the differential roles of numerical proces-
sing in different types of mathematics should have
important implications for mathematics education
and intervention. Previous studies have emphasised
non-symbolic and symbolic quantity processing as a
target for effective interventions for mathematical
learning difficulty (e.g. Butterworth & Laurillard, 2010;
Wilson et al., 2006). Our result suggests that, because
numerical processing is not important for mathemat-
ical reasoning, different strategies are needed to
improve mathematical abilities in different domains.

4.4. Conclusion

The main finding of the current investigation was
that numerical quantity processing in the approxi-
mate and exact number systems was correlated
with arithmetical computation but not with math-
ematical reasoning. This finding is important
because it suggests that previous studies might
have overemphasised the role of numerical quantity
processing in the approximate and exact number
systems in the development of mathematical skills.
Given the evidence for the limited role of numerical
quantity processing in mathematics other than com-
putation, future neuroimaging research should also
go beyond the emphasis on numerical quantity pro-
cessing. Instead, neural bases for basic cognitive
processes such as general reasoning and visuospa-
tial processing should be considered when studying
mathematical (dis)abilities.
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Appendix. Twelve arithmetical rules in
number series completion

Rule in number series completion Example
1 a, a + 1, a + 2, a + 3, a + 4: (a + 5) 3, 4, 5, 6, 7: (8)
2 a, a–1, a–2, a–3, a–4: (a–5) 9, 8, 7, 6, 5: (4)
3 a, a + 1, a + 1 + 3, a + 1 + 3 + 5, a + 1 + 3 + 5 +

7: (a + 1 + 3 + 5 + 7 + 9)
3, 4, 7, 12, 19:
(28)

4 a, a–2, a–2–3, a–2–3–4, a–2–3–4–5: (a–2–3–4–
5–6)

22, 20, 17, 13, 8:
(2)

5 a, a + 1, a + 2, a + 3, a + 2, a + 1: (a) 1, 2, 3, 4, 3, 2: (1)
6 a, a–1, a–1–3, a–1–3–5, a–1–3: (a–1) 16, 15, 12, 7, 12:

(15)
7 a, a + 1, 2a + 1, 3a + 2, 5a + 3: (8a + 5) 1, 2, 3, 5, 8: (13)
8 a, a + 3, a + 3 + 4, a + 3 + 4–6, a + 3 + 4–6 + 3, a

+ 3 + 4–6 + 3 + 4: (a + 3 + 4–6 + 3 + 4–6)
2, 5, 9, 3, 6, 10:
(4)

9 a, a × 2, a × 2 × 2, a × 2 × 2 × 2, a × 2 × 2 × 2 ×
2: (a × 2 × 2 × 2 × 2 × 2)

2, 4, 8, 16, 32:
(64)

10 a, a × 1, a × 1 × 2, a × 1 × 2 × 3, a × 1 × 2 × 3 ×
4: (a × 1 × 2 × 3 × 4 × 5)

2, 2, 4, 12, 48:
(240)

11 a, a × 3, a × 3 ÷ 2, a × 3 ÷ 2 × 3, a × 3 ÷ 2 × 3 ÷
2: (a × 3 ÷ 2 × 3 ÷ 2 × 3)

8, 24, 12, 36, 18:
(54)

12 a, b, a + 2, b × 3, a + 2 + 2, b × 3 × 3: (a + 2 + 2
+ 2)

2, 3, 4, 9, 6, 27:
(8)
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