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Previous Work

* Psychology (questionnaire-based) approaches

* Surveys or interview-based approaches
* Rely heavily on retrospective self-reports
* Time costs, money costs, data granularity and etc.

e Data-driven methods

 Texts, such a Closed vocabulary, Linguistic Inquiry and Word
Count(LIWC)

Open vocabulary, Topic Modeling(LDA)
 Single feature in user digital traces, such as
Hash-tags and Facebook likes (Mypersonality)



Heterogeneous information on social media

v Text
v Image
v' User Interaction

v Emoticon




Personality Data

e 3,162 users in a medical school in Anhui,
» Test Big Five Personality with 44-item questionnaire

Extraversion|Agreeableness|Conscientiousness | Neuroticism|Openness

Age: average, 20.84; the majority, from 20 to 22

Gender: Female users are the majority

Major: nursing (n = 524), clinical medicine (n = 365) and pharmaceutics (n = 342)

Ethnicity: Han Chinese and Hui minority

Region: Anhui, Zhejiang, and Jiangsu
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Framework: Heterogeneous Information Ensemble (HIE)
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Tweets Avatar Emoticons Responsive Pattern




Tweets
¢ Text matters!
* High in Conscientiousness: '
Formal words in Journalese,
such as “era” and “society”
* Low in Conscientiousness: gé;"J'Ifmaapguw}vemm«‘-' " ”"dﬁgr%enmogﬁﬁ?@eaigg]e.
Informal words, such as single characters or typical cyberwords.
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e Pearson Correlation
* Top 2,000 correlated words.

e Clustering
* Top 1,500 Chinese words and all punctuations in word-embedding format.
e K-means to cluster



Text-CNN

LIWC Features
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Take their avatars as an instance.

Introverts

Introverts tend to cover their face or show Extroverts
side face.

Extroverts are more likely to use cartoon
avatars.

High in Openness

Users high in Openness are more likely to Low in Openness
use avatars with their friends.

Users low in Openness prefer avatars with
themselves only.




Avatars

e Avatars matters!

Positive

Negative

Extraversion Agreeableness
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with ResNet results
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Emoticons

* Emoticon matters!
* Agreeable users: smile emoticons
* Emotionally unstable users: theatrical emoticons to their feelings
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Responsive Pattern

* Responsive pattern matters!

* user i tweets a message and his/her fans or followers make
* user i retweets others’ message
* user i makes comment on others’ message

Convolutlon

* Responsive-CNN -
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Evaluation

e Personality Segmentations
* Top or bottom scores in personality traits

: Positive Negative
Trait (>7+0) (<Z—0) Neural
Extraversion 12.4% 13.8% 73.8%
Agreeableness 13.1% 12.6% 74.3%
Conscientiousness 13.4% 12.1% 74.5%
Neuroticism 12.8% 12.8% 74.4%
Openness 12.6% 12.2% 75.2%

* Measure accuracy and precision (as accurate as possible VS as much as possible)

* Finding the right user is usually far more important than finding as many users as possible in
most application scenarios.



Performance and Comparison

* Baseline
* Text features (IBM Watson Personality Insights)
* Likes and Hashtags (Facebook Mypersonality)

centage(%

* Raise EPR@P by 61.49% when making predictions on Extraversion.
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Advantages of HIE

* Increasing Performance given more features .

80 T — T T T T
_ ] | e - Max Improvement
70 - _
60 - L - - - - -
50 F
9
= 40+
o
30 b [0 Personality Insights |-
Mypersonality
20 L Bl Avatar
Text-CNN
Bl BOW K-means
10F [ Emotion Mapping
HIE
W - BT

Extraversion Agreeableness Conscientiousness Neuroticism Openness



eeee0 JIERZE) T T43:52 1 93% ) #

<EE Weibo Personality

TERE K

10

M (TEMRE k-
ol
i

o " 1o
-]

TEMAEX2

=
l £ TENEX

g

ShEE

R

\9

FERE

eeee0 HERI =T T43:53

<{GRE

Weibo Personality

veevew
MGEEE, Mta?E—ic, BEEEMY, R
B

v
SREHYMET, —RHE.

v v

EREIIRLE, MERKREE.

v
MBMBA—H, RONE

tag /) MELE .

vevew
BT, BTENE, EAHE AR
A

1 94% ) 4

i%

eeee0 HERI =T T43:53

Weibo Personality

¥ S/FEMatchig#k

76%

1 94% ) 4




Summary

* Propose HIE, a new personality measurement framework
* Using heterogeneous information in users’ digital traces

 Self-language usage, Avatar, Emoticon and Responsive pattern on
social media

e Design various feature engineering strategies

* Applications: MissKnown






