Future Schools in 2030

The Developmental Dynamics of Cognition, Mathematics, Motivation and Well-being

Professor Pirjo Aunio & Professor Markku Niemivirta University of Helsinki

北京师范大学未来教育高精尖创新中心 Beijing Advanced Innovation Center for Future Education

The aim of this research project

The Developmental Dynamics in Cognition, Mathematics, Motivation and Well-being

Development Educational setting Cultural context

To examine the developmental dynamics in cognition, mathematical skills, motivational tendencies, and well-being within two different educational settings

- 1. Longitudinal design
- 2. Cross-cultural comparison
- 3. Broad view on learning and achievement

- Skill development in mathematics
- Development of motivation
- Developmental interplay between math learning and motivation

Early predictors of math-related motivation

Nuutila, Tuominen-Soini, Niemivirta (in prep.). Developmental predictors of interest, success expectancy and task performance in mathematics.

Early predictors of math-related motivation

Nuutila, Tuominen-Soini, Niemivirta (in prep.). Developmental predictors of interest, success expectancy and task performance in mathematics.

Long-term predictions of math-related motivation

Nuutila, Tuominen-Soini, Vainikainen & Niemivirta (2016). The Consistency and Longitudinal Predictions of Elementary School Students' Task Motivation in Mathematics. *Submitted*

Long-term predictions of math-related motivation

Nuutila, Tuominen-Soini, Vainikainen & Niemivirta (2016). The Consistency and Longitudinal Predictions of Elementary School Students' Task Motivation in Mathematics. *Submitted*

- Task interest independent of prior core abilities
- Change in later success expectancy predicted by task performance, but not the other way around
- Math-related intrinsic value predicted mostly by previous task interest, math self-concept mostly predicted by previous success expectancy
- Achievement predicted by previous task performance

χ² (206) = 554.49, p < .001 CFI = .96, RMSEA = .04, SMRM = .04

Motivational and cognitive predictors of math performance

Husberg, Aunio, Vainikainen & Niemivirta (in prep). The Role of Working Memory and Motivation in Children's Arithmetical Performance.

Motivational and cognitive predictors of math performance

Husberg, Aunio, Vainikainen & Niemivirta (in prep). The Role of Working Memory and Motivation in Children's Arithmetical Performance.

Development of math-related interest, self-concept and achievement

Tapola & Niemivirta (in prep). Developmental trajectories of school beginner's perceived competence, interest and performance in mathematics.

Development of math-related interest, self-concept and achievement

Tapola & Niemivirta (in prep). Developmental trajectories of school beginner's perceived competence, interest and performance in mathematics.

A model of the development of basic mathematical skills

Aunio & Räsänen (2015). Core mathematical skills at ages 5 to 8 years. European Early Childhood Education Research Journal.

A model of the development of basic mathematical skills

Aunio & Räsänen (2015). Core mathematical skills at ages 5 to 8 years. European Early Childhood Education Research Journal.

Aunio, P., Heiskari, P., Van Luit, J.E.H & Vuorio, J-M. (2015) The development of early numeracy skills in preschool and kindergart en. *Journal of Early Childhood Research, 13,* 13-16.

Aunio, P., Heiskari, P., Van Luit, J.E.H & Vuorio, J-M. (2015) The development of early numeracy skills in preschool and kindergart en. *Journal of Early Childhood Research, 13,* 13-16.

Early numeracy: relational skills (ability to organize and compare quantities) and counting skills (ability to operate with number-word sequence) Individual differences in early numeracy skills can be detected before school age • Differences in the beginning of the kindergarten were visible also in the end of the kindergarten

Aunio, P. & Niemivirta, M. (2010) Predicting children's mathematical performance in grade one by early numeracy skills. *Learning and Individual Differences, 20,* 427-435.

Aunio, P. & Niemivirta, M. (2010) Predicting children's mathematical performance in grade one by early numeracy skills. *Learning and Individual Differences, 20,* 427-435.

Cross-cultural studies into mathematical development

Aunio, P., Niemivirta, M., Hautamäki, J., Van Luit, J.E.H., Shi, J. & Zhang, M. (2006) Young Children's Number Sense in China and Fi nland. *Scandinavian Journal of Educational Research*, 50 (5) 483-502.

Cross-cultural studies into mathematical development

Aunio, P., Niemivirta, M., Hautamäki, J., Van Luit, J.E.H., Shi, J. & Zhang, M. (2006) Young Children's Number Sense in China and Fi nland. *Scandinavian Journal of Educational Research*, 50 (5) 483-502.

- With respect to counting skills, the Chinese children outperformed the Finnish children irrespective of age, whereas in relation to relational skills, this was true only among the older children.
- Cross-cultural differences exists already before comprehensive school and there is changes in age groups

Nationality by Age	
Gender by Age	

Mathematical development and other learning related factors

Korhonen, J., Linnanmäki, K. & Aunio, P. (2014). Learning difficulties, academic well-being and educational dropout: A person-cent red approach. *Learning and Individual Differences*, 31, 1-10.

Fig. 2. Students' latent mean scores on performance and well-being scales as a function of group membership.

Mathematical development and other learning related factors

Korhonen, J., Linnanmäki, K. & Aunio, P. (2014). Learning difficulties, academic well-being and educational dropout: A person-cent red approach. *Learning and Individual Differences*, 31, 1-10.

- Low performance was related to negative academic well-being (feeling o learning difficulties and burn-out) in 9th graders
- Student profiles with negative academic well-being (NAWB+low performance, NAWB+average performance) had higher risk for later educational drop-out

Fig. 2. Students' latent mean scores on performance and well-being scales as a function of group membership.

Key measures

- Mathematical skills (Math Achievement Test, Stage I, Grades 1 to 3)
 - Basic arithmetic skills
 - Measurements
 - Applied arithmetic
 - Reasoning
- Cognitive components (Children and Adolescent Cognition Manual, National Children's Study of China (NCSC), National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University)
 - Short-term memory (STM | Visual Number Immediate Recognition; STM II Paired Association Immediate Recognition)
 - Attention
 - Visuo-Spatial Ability (VSA | Hidden Figures, VSA || Mental Rotation)
 - Long-term memory (LTM I Visual Number Delayed Recognition, LTM II Paired Association Delayed Recognition)
 - Reasoning (Reasoning I Digit Analogy, Reasoning II Graph Analogy, Reasoning III Graph Sequence)

Key measures

- Motivational tendencies
 - Value and expectancy beliefs
 - Utility, importance, interest
 - Competence, effort, anxiety
 - Achievement goal orientations
 - Mastery-intrinsic, mastery-extrinsic, performance-approach, performance-avoidance, work avoidance
 - Control beliefs
 - Agency beliefs
 - Means-ends beliefs
- Well-being
 - Fear of failure
 - Academic withdrawal
 - Self-esteem
 - School value
 - Emotional exhaustion
 - Perfectionistic tendencies
 - Standards, discrepancy, expectations
- Temperament
 - Behavioral inhibition, behavioral approach, reward seeking

Schedule	Procedure	
November 2016	Piloting of the measures	
November & December 2016	Research permits from communities, schools and parents	
January & February 2017	Data collection – first phase	
March 2017	Data coding	
April – June 2017	Results from the first phase	
December 2017 & January 2018	Data collection – second phase	
December 2018 & January 2019	Data collection – third phase	
December 2019 & January 2020	Data collection – fourth phase	

- The joint effects of skill and will on learning are complex and challenging to detect, yet a necessary task for understanding the big picture
- Developmental analyses within a design that includes various types of key constructs are imperative
- Close collaboration with schools and parents is a necessity

- Expected key outcomes and implications:
 - Increases our and thus teachers' understanding of various factors contributing to students' math learning
 - Produces knowledge that will help teachers to provide the students with more personalized support for successful learning