Workshop: How to Design Gamified Learning Environments

PhD. Leonardo Brandão Marques (Prof.)
UFAL - NEES
PhD. Geiser Chalco Calco (Research Assistan - Pot-Doc.)
UFAL - NEES

What is Gamification?

Ludus

What is Gamification?

"the use of game design elements in nongame contexts" (Deterding, Dixon, Khaled, \& Nacke, 2011)
"Gamification is not itself a product; one [a teacher] does not create a gamification as one creates a game. Instead, one [a teacher] adds game elements to change a process that already exists to change how that process influences people" ${ }^{1}$

${ }^{1}$ Gamification Science, Its History and Future: Definitions and a Research Agenda
Richard N. Landers, Elena M. Auer, Andrew B. Collmus, and Michael B. Armstrong

What is Game Design Elements?

What is Game Design Elements?

Rr	Periodic Table of Gamification Elements								Fr	Td
Ob	Sp	La		ta	ified		Pf	T	N	c
Tp	S	St	F	Go	c	Sn	Ss	Sd	Sp	Gp
ch	Ce	L	Q	${ }_{\text {LP }}$	${ }^{27}$ Bb	E	${ }^{20} \mathrm{Bc}$	${ }^{30} \mathrm{Ee}$	U	ct
cu	Ap	ct	A	Cn	Cs	Ks	P	Pr	L	B
Marcz	wski ${ }^{[1]}$	Ve	Lo	1 p	v	${ }^{40}$ Dt	A	Lt	An	

MDA \& MDC Framework to classify game design elements

A game developer perspective

Mechanics, Dynamics and Aesthetics (MDA) framework

- Mechanics: the basic rules or components of the game
- Dynamics: the behavior of the player with the mechanics
- Aesthetics: the emotional responses of the player

MDA \& MDC Framework to classify game design elements

A game developer perspective

Mechanics, Dynamics and Components (MDC)

- Mechanics: the basic rules or components of the game
- Dynamics: the behavior of the player with the mechanics
- Components: the M and D implementation

Player Profiles \& Player Models

Yee (2016) Player Types

 Achievements: Advancement, Mechanics, Competition.Social: Socializing, Relationship, Teamwork.
Immersion: Discovery, Role Playing, Customization, Escapism.

Player Types Questionnaire to Gamified System

(Andrade, Marques, Bittencourt \& Isotani, 2016)

- Variation of Yee Player Types \rightarrow no subcomponets

- Aimed at the general public

Player Types Questionnaire to Gamified Systems

Score	HI - How Important	F - Frequency	L - Like or Not
2	Really important	Always	Really like
1	Important	Often	I like a bit
0	Whatever	I do not know for sure	Whatever
-1	Little importance	Rarely	I do not like it very much
-2	No important	Never	I don't like it at all

Player Types Questionnaire to Gamified Systems

1. Be in advantage in relation to the other players? (HI)
2. About your character's armor or clothing matching in color and style, or do the pieces of the game look interesting? (HI)
3. Observe your own performance in relation to other players (HI)
4. About the appearance of your character, be different from the appearance of other characters? (HI)
5. To you, compete with other players is.. (HI)
6. You become very good at a game is.. (HI)
7. Defeat other players? (F)
8. Do you think of items or features that could be changed to customize the appearance of your character or the game itself? (F)
9. Chat with other players (online) about your personal issues/issues? (F)
10. Try to provoke or irritate on purpose other players? (F)

Player Types Questionnaire to Gamified Systems

11. How long do you spend customizing your character during his creation? (F)
12. How often other players (online) offered you help when you had a real-life problem? (F)
13. Do you like being immersed in a fantasy world? (F)
14. Looking to be part of a group at games? (F)
15. How often do you have meaningful conversations with other players? (F)
16. Do you like helping other players? (L)
17. Do you like to do actions/things that irritate other players? (L)
18. Do you like meeting other players? (L)
19. Do you like chatting with other players? (L)

国

Gamification frameworks

Design the Interactions

Aligning
Game Element

Gamified System

Gamification frameworks

Facilitates the entire process

Design the Interactions

Aligning
Game Element

> To User
> Motivational Profile

Gamified System

Gamiflow

A framework to gamify learning environments based on the flow theory

Five iterative stages based on the traditional instructional design ADDIE model

(A.1) Describing the characteristics of the non-game context

Non-game context: math classroom of
 upper secondary education level school Target-public: 15 to 18 years old students Involved entities:

(A.1) Describing the characteristics of the non-game context

Non-game context: math classroom of upper secondary education level school Target-public: 15 to 18 years old students Involved entities:

- Teacher
- Classmates
- Smartphone agent assistant
- Math problem book
-

(A.1) Describing the characteristics of the non-game context

Non-game context: math classroom of upper secondary education level school Target-public: 15 to 18 years old students Involved entities:

- Teacher
- Classmates
- Smartphone agent assistant
- Math problem book
-

Non-game context objectives: Improve skill/knowledge into maths

- Metric: 0 to 10 score
- Instrument: summative/formative assessment)

(A.1) Identifying the observable interactions

Observable interactions:

Smartphone agent assistant (virtual agents)

List of math problems (objects)

- Asking a tip about how to solve an exercise
- Solving exercises in CL groups
- ...

- Type of Interaction: synctityous, drect.
- Restriction related to entity: only friend
- Type of Interaction: asynchronous, indirect.
- Restriction related to entity: none

Observable interactions:

- Asking question about the lesson
- Request more exercises through email

(A.2) Identifying the engagement problems

Engagement Problem: E.g. Lack of involvement

(metric)

(instrument)
(condition)

(A.3) Understanding the motivational problems based on flow theory

(1) Lack of balance between ability/challenge
[Target-public] believe that their abilities are not enough to deal with the challenge, they believe that their abilities are not related with the situation, or they feels that the situation do not require their abilities

(2) Lack of objective and short-term goals

[Target-public] do not know
what to do, they do not know
what is expected to be
achieved, or their goals are not
clearly established

(3) Lack of immediate and clear feedback

It is unclear for the [target-public] how well are doing the things, or they feel that things are not progressing according to what their is doing.

(A.4) Defining the engagement goals

Engagement goal:

- Increase the average time spent solving math problems > 2hrs
- Improve the score of effort through self-report questionnaire > 40

Motivational goal

- Balance the perceived ability/challenge
- Make explicit the objective and short term-goals
- Give direct and clear feedback

Motivational problem

- Lack of balance between ability/challenge
- Lack of objective and short term-goals
- Lack of immediate and clear feedback

Why?

Engagement problem: E.g. Lack of involvement

- Daily average of time solving math problems
< 1hr
- Score of self-report questionnaire of effort <

(A.5) Delineate the target-behavior

Engagement goal:

- Increase the average time spent solving math problems > 2hrs
- Improve the score of effort through self-report questionnaire > 40

Delineate the target-behavior

Expected positive effect on non-game context objective: Improvement on the scores of summative/formative assessments

Observable Interaction (solving problem)

(A.5) Delineate the target-behavior

To delineate target-behaviors from observable interactions, we suggest to use the structure ...

15-18 y/o student (target-public)

Target-public Event

E.g. Delineate the target-behavior

Engagement goal:

- Increase the daily average time-spent solving math problems $>2 \mathrm{hrs}$

List of math problems (object)

15-18 y/o student (target-public)

Hands-on \& Heads in (1)

Objective: Demonstrate ability to delineate target behavior

Scenario 01

Instructional goal: deduct a given math formula

A farmer plants apple trees in a square pattern. In order to protect the apple trees against the wind he plants conifer trees all around the orchard.
The pattern of apple trees and conifer trees for any number (n) of rows of apple trees:

$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
XX X	$\mathrm{X} \times \mathrm{XX} \mathrm{X}$	XXXXXXX	XXXXXXXXXX
$x \bullet x$	$x \bullet \bullet x$	$x \bullet \bullet$ - \quad ¢	$x \bullet \bullet$ • $0 \cdot x$
$\mathrm{X} \times \mathrm{X}$	X X	X (x	X (X
	$x \bullet \bullet x$	$x \bullet \bullet \bullet x$	$x \bullet \bullet \bullet$ -
	X X X X X	X X	X (
$\mathbf{X}=$ conifer tree \bullet = apple tree		XXXXXXX	x x
			$x \bullet \bullet \bullet$ -
			X X X X X X X $\mathrm{X}^{\text {¢ }}$

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	
3		
4		
5		

Q2. What is the formula to deduct
The number of conifer trees?

Scenario 01

Engagement Problem

On a Online Math Course close to 30% of the participants drop out the course when they reach topics related to this instructional goal.

Engagement goal:

- Decrease into 10% of participant who drop out the course when they reach topics related to this instructional goal

Expected positive effect on non-game context objective: Improvement +2 points on the scores of PISA assessments

Scenario 01

Instructional goal: deduct a given math formula

A farmer plants apple trees in a square pattern. In order to protect the apple trees against the wind he plants conifer trees all around the orchard.
The pattern of apple trees and conifer trees for any number (n) of rows of apple trees:

$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
XX X	$\mathrm{X} \times \mathrm{XX} \mathrm{X}$	XXXXXXX	XXXXXXXXXX
$x \bullet x$	$x \bullet \bullet x$	$x \bullet \bullet$ - \quad ¢	$x \bullet \bullet$ • $0 \cdot x$
$\mathrm{X} \times \mathrm{X}$	X X	X (x	X (X
	$x \bullet \bullet x$	$x \bullet \bullet \bullet x$	$x \bullet \bullet \bullet$ -
	X X X X X	X X	X (
$\mathbf{X}=$ conifer tree \bullet = apple tree		XXXXXXX	x x
			$x \bullet \bullet \bullet$ -
			X X X X X X X $\mathrm{X}^{\text {¢ }}$

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	
3		
4		
5		

Q2. What is the formula to deduct
The number of conifer trees?

Hands-on \& Heads in (1)

Objective: Demonstrate ability to delineate target behavior Solution

Analysis Phase

(A.6) Identifying the Player Profiles

Target-
Public
(Student)

Enjoy the teamwork and get satisfaction from group achievements, individual accomplishment s are not relevant

5
Customization 5 Mechanics

Competition
Role-playing

Using the QPJ-BR to identify what the target-public like

Target-public is Socializer

Enjoy to make meaningful relationships with others

Enjoy to chat and meet other players, like to explain the rules, strategies, and even some tricks for others to do well.

Hands-on \& Heads in (2)

Objective: Demonstrate ability to identify Player Profiles

Design Phase

(D.1.a) Delineating game dynamics for the target-behaviors

Finish problem End problem To be ended

Game dynamics should be designed to maintain the target-public in flow state.

To maintain balance of ability/challenge when the target-public is in flow state, the most commonly used game-dynamics are progression, narrative and emotions

Game dynamics:

- Constraints
- Relationships
- Progression
- Narrative

Emotions

E.g. Game-dynamic of progression for the Scenario 01

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	
3		
4		
5		

Q2. What is the formula to deduct The number of conifer trees?

Xn	$\mathrm{X}^{2} \mathrm{n}$	n^{2}	X/n

Game dynamics should be designed to avoid the frustration

To avoid the frustration, the game-dynamic should reduce the level of challenge (1) or increase the the level of ability (2) for the target-public

Game dynamics:

- Constraints
- Relationships
- Progression
- Narrative
- Emotions

E.g. Game-dynamic of constraints to avoid frustration in the Scenario 01

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	$[8][12][16][20]$
3	$[7][9][11]$	$[20][24][28][32]$
4	$[12][14][16][18]$	$[28][32][36][40]$
5	$[20][25][30]$	$[32][36][40][44]$

A constraints that limit the numbers to complete the table will avoid the frustration because this game-dynamic reduces the level of challenge

E.g. Game-dynamic of relationship to avoid frustration in the Scenario 01

A group formation to complete the task is relationship that reduces the level of challenge
pair-group

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	
3		
4		
5		

E.g. Game-dynamic of constraints to avoid boredom in the Scenario 01

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	
3		
4		
5		

A time limit to complete the problem is a game dynamic to increase the challenge avoiding the boredom
E.g. Game-dynamic of relatedness to avoid boredom in the Scenario 01

Q1. Complete the table:
A social pressure showing performance in the task is a game dynamic that increase the challenge avoiding the boredom

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	
3		
4		
5		

Adjusting the game-dynamics

After to define how the game-dynamics will be used to maintain balance of ability/challenge, it's time to define how these game-dynamics are related to the clear objective and short-term goals, and to the clear \& direct feedback

Q1. Complete the table by marking the corresponding numbers of conifer trees and apple trees for each row:

Objective \& short-term goals

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	$[8][12][16][20]$
3	$[7][9][11]$	$[20][24][28][32]$
4	$[12][14][16][18]$	$[28][32][36][40]$
5	$[20][25][30]$	$[32][36][40][44]$

A constraints that limit the numbers to complete the table will avoid the frustration because this game-dynamic reduces the level of challenge

Q1. Complete the table before the time limit exceeds:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	
3		
4		
5		

Objective \& short-term goals

A time limit to complete the problem is a game dynamic to increase the challenge avoiding the boredom

E.g. Game-dynamic of progression for the Scenario 01

The advance of (Q2) for the progression doesn't see to be properly aligned with the required effort to answer the question (Q2)

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	
3		
4		
5		

Q2. What is the formula to deduct The number of conifer trees?

E.g. Game-dynamic of progression for the Scenario 01

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	
3		
4		
5		

Q2. What is the formula to deduct The number of conifer trees?

E.g. Game-dynamic of constraints to avoid frustration in the Scenario 01

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees	When a non available number is introduced, a feedback indicating
1	1	8	
2	4	16	the breakout of a rule should be
3	9	24	the breakout of a rule should be
4	15	[28] [32] [36] [40]	ndicated
5	[20] [25] [30]	ERROR: You can only introduce the numbers [12] [14] [16] [18]	
			[18]

E.g. Game-dynamic of constraints to avoid boredom in the Scenario 01

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	16
3	9	24
4	16	
5		

When the timeout is reached, a feedback should be given

E.g. Game-dynamic of relationship to avoid frustration in the Scenario 01

A group formation to complete the task is relationship that reduces the level of challenge

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	
3		
4		
5		

E.g. Game-dynamic of relatedness to avoid boredom in the Scenario 01

Q1. Complete the table:
A social pressure showing performance in the task is a game dynamic that increase

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	

- The advancement of the progression, the acts/events of the narrative, and the mechanisms that trigger emotions should be defined as part of the feedback
(D.1.a) Align game dynamics for each player profile

Scenario 01

Instructional goal: deduct a given math formula

A farmer plants apple trees in a square pattern. In order to protect the apple trees against the wind he plants conifer trees all around the orchard.
The pattern of apple trees and conifer trees for any number (n) of rows of apple trees:

$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
XX X	$\mathrm{X} \times \mathrm{XX} \mathrm{X}$	XXXXXXX	XXXXXXXXXX
$x \bullet x$	$x \bullet \bullet x$	$x \bullet \bullet$ - \quad ¢	$x \bullet \bullet$ • $0 \cdot x$
$\mathrm{X} \times \mathrm{X}$	X X	X (x	X (X
	$x \bullet \bullet x$	$x \bullet \bullet \bullet x$	$x \bullet \bullet \bullet$ -
	X X X X X	X X	X (
$\mathbf{X}=$ conifer tree \bullet = apple tree		XXXXXXX	x x
			$x \bullet \bullet \bullet$ -
			X X X X X X X $\mathrm{X}^{\text {¢ }}$

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	
3		
4		
5		

Q2. What is the formula to deduct
The number of conifer trees?

Scenario 01

Instructional goal: deduct a given math formula

A farmer plants apple trees in a square pattern. In order to protect the apple trees against the wind he plants conifer trees all around the orchard.
The pattern of apple trees and conifer trees for any number (n) of rows of apple trees:

$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
$\mathrm{X} \times \mathrm{X}$	$\mathrm{X} \times \mathrm{XX} \mathrm{X}$	XXXXXXX	XXXXXXXXXX
$\mathrm{X} \bullet \mathrm{x}$	X - ${ }^{\text {P }} \mathrm{X}$		$\mathrm{X} \bullet \bullet \bullet$ - \quad -
$\mathrm{X} \times \mathrm{X}$	X X	X X	X (X
	$x \bullet$ - x	X - - \quad -	$\mathrm{X} \bullet \bullet \bullet$ - \quad -
	$\mathbf{X} \times \mathrm{XX}$	$X \quad \mathrm{X}$	X (X
			$x \bullet \bullet \bullet$ -
$\mathbf{X}=$ conifer tree		XXXXXXX	
$\bullet=a p$			

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	16
3	9	24
4	16	32
5	25	40

Q2. What is the formula to deduct
The number of conifer trees?

Scenario 01

Instructional goal: deduct a given math formula

A farmer plants apple trees in a square pattern. In order to protect the apple trees against the wind he plants conifer trees all around the orchard.
The pattern of apple trees and conifer trees for any number (n) of rows of apple trees:

$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
XX X	$\mathrm{X} \times \mathrm{XX} \mathrm{X}$	XXXXXXX	XXXXXXXXXX
$x \bullet x$	$x \bullet \bullet x$	$x \bullet \bullet$ - \quad ¢	$x \bullet \bullet$ • $0 \cdot x$
$\mathrm{X} \times \mathrm{X}$	X X	X (x	X (X
	$x \bullet \bullet x$	$x \bullet \bullet \bullet x$	$x \bullet \bullet \bullet$ -
	X X X X X	X X	X (
$\mathbf{X}=$ conifer tree \bullet = apple tree		XXXXXXX	x x
			$x \bullet \bullet \bullet$ -
			X X X X X X X $\mathrm{X}^{\text {¢ }}$

Q1. Complete the table:

n	Number of apple trees
1	1
2	4
3	
4	
5	

599990

Scenario 01

Instructional goal: deduct a given math formula

A farmer plants apple trees in a square pattern. In order to protect the apple trees against the wind he plants conifer trees all around the orchard.
The pattern of apple trees and conifer trees for any number (n) of rows of apple trees:

$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
$\mathrm{x} \times \mathrm{X}$	XXXXX	XXXXXXX	XXXXXXXXXX
$x \bullet x$	x - $\mathrm{x}^{\prime} \mathrm{x}$	$x \bullet \bullet \bullet x$	$x \bullet \bullet$ - $0 \cdot x$
$\mathrm{X} \times \mathrm{X}$	X X	x x	x x
	$x \bullet$ - \quad x	$\mathrm{X} \bullet$ - ${ }^{\text {P }}$	$x \bullet \bullet \bullet$ -
	$\mathbf{X X X X X}$	x x	x x
		$x \bullet \bullet \bullet x$	$x \bullet \bullet$ - \quad -
$\mathbf{X}=$ conifer tree = apple tree		X X X X X X	x x
			$x \bullet \bullet$ • $0 \cdot x$
			XXXXXXXXX

Q2.

What is the formula to deduct
The number of conifer trees?

Scenario 02

Instructional goal: deduct a given math formula

A farmer plants apple trees in a square pattern. In order to protect the apple trees against the wind he plants conifer trees all around the orchard.
The pattern of apple trees and conifer trees for any number (n) of rows of apple trees.

Q1. Complete the table:
Q1. Deduce the rule that allows

$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
$\mathrm{x} \times \mathrm{X}$	XXXXX	XXXXXXX	XXXXXXXXXX
$\mathrm{X} \bullet \mathrm{x}$	X - $\mathrm{X}^{\prime} \mathrm{X}$		
$\mathbf{X} \times \mathrm{X}$	$x \quad x$	x x	X (X
	$x \bullet \bullet x$	$x \bullet \bullet \bullet \quad 0$	$x \bullet \bullet \quad \bullet \quad$ -
	XXXXX	x x	x x
		$x \bullet \bullet \bullet \quad 0$	$x \bullet \bullet$ - \quad -
$\mathbf{X}=\text { conifer tree }$		XXXXXXX	x x
			$x \bullet \bullet$ • 0
\bullet = apple tree			XXXXXXXXX

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	
3		
4		
5		

Q2. What is the formula to deduct The number of conifer trees?

Scenario 01

Instructional goal: deduct a given math formula

A farmer plants apple trees in a square pattern. In order to protect the apple trees against the wind he plants conifer trees all around the orchard.
The pattern of apple trees and conifer trees for any number (n) of rows of apple trees:

$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
$\mathrm{X} \times \mathrm{X}$	XXXXX	XXXXXXX	XXXXXXXXXX
$x \bullet x$	$x \bullet \bullet x$	$x \bullet \bullet$ - \quad ¢	$x \bullet \bullet$ - $0 \cdot x$
$\mathrm{X} \times \mathrm{X}$	X X	X X	X (X
	$x \bullet \bullet x$	X - ${ }^{\text {a }}$ - X	$\mathrm{X} \bullet \bullet \bullet$ -
	X X X X X	$X \quad \mathrm{X}$	X (X
		$x \bullet \bullet \bullet x$	$x \bullet \bullet \bullet$ -
$\mathbf{X}=$ conifer tree - = apple tree		$\mathrm{X} \times \mathrm{XXXXX}$	x x
			$x \bullet \bullet \bullet$ -
			X X X X X X X X $\mathrm{X}^{\text {d }}$

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	
2	4	
3	9	
4	16	
5	25	

Q2. What is the formula to deduct
The number of conifer trees?

Scenario 01

Instructional goal: deduct a given math formula

A farmer plants apple trees in a square pattern. In order to protect the apple trees against the wind he plants conifer trees all around the orchard.
The pattern of apple trees and conifer trees for any number (n) of rows of apple trees:

$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
XX X	$\mathrm{X} \times \mathrm{XX} \mathrm{X}$	XXXXXXX	XXXXXXXXXX
$x \bullet x$	$x \bullet \bullet x$	$x \bullet \bullet$ - \quad ¢	$x \bullet \bullet$ • $0 \cdot x$
$\mathrm{X} \times \mathrm{X}$	X X	X (x	X (X
	$x \bullet \bullet x$	$x \bullet \bullet \bullet x$	$x \bullet \bullet \bullet$ -
	X X X X X	X X	X (
$\mathbf{X}=$ conifer tree \bullet = apple tree		XXXXXXX	x x
			$x \bullet \bullet \bullet$ -
			X X X X X X X $\mathrm{X}^{\text {¢ }}$

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	$\mathbf{1 2}$
3	9	$\boxed{y y y}$
4	16	$\boxed{ }$

Q2. What is the formula to deduct
The number of conifer trees?

Scenario 01

Instructional goal: deduct a given math formula

A farmer plants apple trees in a square pattern. In order to protect the apple trees against the wind he plants conifer trees all around the orchard.
The pattern of apple trees and conifer trees for any number (n) of rows of apple trees:

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	16 ■
3	9 ■	24 ■
4	16 []	12
5	$50>2$	74

Scenario 01

Instructional goal: deduct a given math formula

A farmer plants apple trees in a square pattern. In order to protect the apple trees against the wind he plants conifer trees all around the orchard.
The pattern of apple trees and conifer trees for any number (n) of rows of apple trees:

$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
XX X	$\mathrm{X} \times \mathrm{XX} \mathrm{X}$	XXXXXXX	XXXXXXXXXX
$x \bullet x$	$x \bullet \bullet x$	$x \bullet \bullet$ - \quad ¢	$x \bullet \bullet$ • $0 \cdot x$
$\mathrm{X} \times \mathrm{X}$	X X	X (x	X (X
	$x \bullet \bullet x$	$x \bullet \bullet \bullet x$	$x \bullet \bullet \bullet$ -
	X X X X X	X X	X (
$\mathbf{X}=$ conifer tree \bullet = apple tree		XXXXXXX	x x
			$x \bullet \bullet \bullet$ -
			X X X X X X X $\mathrm{X}^{\text {¢ }}$

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	
3	9	
4	16	
5	25	

Q2. What is the formula to deduct The number of conifer trees?

Scenario 01

Instructional goal: deduct a given math formula

A farmer plants apple trees in a square pattern. In order to protect the apple trees against the wind he plants conifer trees all around the orchard.
The pattern of apple trees and conifer trees for any number (n) of rows of apple trees:

$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
$\mathrm{X} \times \mathrm{X}$	$\mathrm{X} \times \mathrm{XX} \mathrm{X}$	XXXXXXX	XXXXXXXXXX
$\mathrm{X} \bullet \mathrm{x}$	X - ${ }^{\text {P }} \mathrm{X}$		$\mathrm{X} \bullet \bullet \bullet$ - \quad -
$\mathrm{X} \times \mathrm{X}$	X X	X X	X (X
	$x \bullet$ - x	X - - \quad -	$\mathrm{X} \bullet \bullet \bullet$ - \quad -
	$\mathbf{X} \times \mathrm{XX}$	$X \quad \mathrm{X}$	X (X
			$x \bullet \bullet \bullet$ -
$\mathbf{X}=$ conifer tree		XXXXXXX	
$\bullet=a p$			

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	16
3	9	24
4	16	32
5	25	40

Q2. What is the formula to deduct
The number of conifer trees?

Scenario 01

Instructional goal: deduct a given math formula

A farmer plants apple trees in a square pattern. In order to protect the apple trees against the wind he plants conifer trees all around the orchard.
The pattern of apple trees and conifer trees for any number (n) of rows of apple trees:

$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
$\mathrm{X} \times \mathrm{X}$	$\mathrm{X} \times \mathrm{XX} \mathrm{X}$	XXXXXXX	XXXXXXXXXX
$\mathrm{X} \bullet \mathrm{x}$	X - ${ }^{\text {P }} \mathrm{X}$		$\mathrm{X} \bullet \bullet \bullet$ - \quad -
$\mathrm{X} \times \mathrm{X}$	X X	X X	X (X
	$x \bullet$ - x	X - - \quad -	$\mathrm{X} \bullet \bullet \bullet$ - \quad -
	$\mathbf{X} \times \mathrm{XX}$	$X \quad \mathrm{X}$	X (X
			$x \bullet \bullet \bullet$ -
$\mathbf{X}=$ conifer tree		XXXXXXX	
$\bullet=a p$			

Q1. Complete the table:

n	Number of apple trees	Number of conifer trees
1	1	8
2	4	16
3	9	24
4	16	32
5	25	40

Q2. What is the formula to deduct
The number of conifer trees?

Scenario 01
 Instructional goal: apply a given math formula

A result of global warming is that the ice of some glaciers is melting. Twelve years after the ice disappears, tiny plants, called lichen, start to grow on the rocks.

Each lichen grows approximately in the shape of a circle. The relationship between the diameter of this circle and the age of the lichen can be approximated with the formula:

$$
d=7.0 \times \sqrt{(t-12)} \quad \text { for } t \geq 12
$$

Where d represents the diameter of the lichen in millimetres, and t represents the number of years after the ice has disappeared.

Using the formula, calculate the diameter of the lichen, 16 years after the ice disappeared.

ABOUT ME

Mercury is the closest planet to the Sun and the smallest one in the Solar System-it's only a bit larger than our Moon. The planet's name has nothing to do with the liquid metal since it was named after the Roman messenger god, Mercury

2010-2019
Mercury is the closest planet to the Sun

Venus ha name, but it's very hot

2010-2019
Despite being red, Mars is a cold place, not hot

Jupiter is the biggest planet in our Solar System

JOB POSITION 1

Job / position title here

- List your responsibilities for this job
- Adapt this to your needs
- Try to keep it short
- Get straight to the point
- Don't omit important information

EDUCATION

2010-2019
Venus has a beautiful name, but it's terribly hot

2010-2019
Mercury is the closest planet
to the Sun

2010-2019
Despite being red, Mars is a cold place, not hot

2010-2019
Jupiter is a gas giant and the biggest planet in our Solar System

Principal subjects / occupational skills covered:

- List the subjects here
- Sort them by relevance
- Adapt this to your needs
- Try to keep it short
- Get straight to the point

COMMUNICATION SKILLS

COMMUNICATION SKILLS

Mother tongue(s) Other language(s)

- Language 1
- Language 2

TECHNICAL SKILLS

COMPUTER SKILLS

VOLUNTEER WORK

Venus
Venus has a beautiful name, but it's terribly hot

Mercury
Mercury is the closest
planet to the Sun

Mars

Despite being red, Mars is a cold place, not hot

Jupiter

It's a gas giant and the biggest
planet in our Solar System

Venus
Venus has a
beautiful name, but it's terribly hot

Mercury
Mercury is the closest planet to the Sun

Mars
Despite being red, Mars is a cold place, not hot

Jupiter
It's a gas giant and the biggest planet in our Solar System

CONTACT

ADDRESS	Your address here
PHONE	0016641234567
CELL PHONE	0016641234567
EMAIL	Email address here
	$\boxed{~ Q ~}$

THANKS!

CREDITS

This is where you give credit to the ones who are part of this project. Did you like the resources on this template? Get them for free at our other websites.

- Presentation template by Slidesgo
- Icons by Flaticon
- Infographics by Freepik
- Author introduction slide photo created by Freepik
- Text \& Image slide photo created by Freepik.com

Instructions for use

In order to use this template, you must credit Slidesgo by keeping the Credits slide.

You are allowed to:

- Modify this template.
- Use it for both personal and commercial projects.

You are not allowed to:

- Sublicense, sell or rent any of Slidesgo Content (or a modified version of Slidesgo Content).
- Distribute Slidesgo Content unless it has been expressly authorized by Slidesgo.
- Include Slidesgo Content in an online or offline database or file.
- Offer Slidesgo templates (or modified versions of Slidesgo templates) for download.
- Acquire the copyright of Slidesgo Content.

For more information about editing slides, please read our FAQs:
https://slidesgo.com/faqs

Fonts \& colors used

This presentation has been made using the following fonts:

Barlow Condensed
(https://fonts.google.com/specimen/Barlow+Condensed)

Use our editable graphic resources...

You can easily resize these resources keeping the quality. To change the color just ungroup the resource and click on the object you want to change. Then click on the paint bucket and select the color you want. Don't forget to group the resource again when you're done.

...and our set of editable icons

You can resize these icons keeping the quality.
You can change the stroke and fill color; just select the icon and click on the paint bucket/pen.

Business Icons

$$
\begin{aligned}
& \text { (S) } 28 \text { Q }
\end{aligned}
$$

$$
\begin{aligned}
& \text { M } \\
& \text { ○○ 준 }
\end{aligned}
$$

Avatar Icons

Creative Process Icons

Educational Process Icons

Help \＆Support Icons

$$
\begin{aligned}
& \text { 图 } \Leftrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { 高號 } \\
& \text { © }
\end{aligned}
$$

Medical Icons

Nature Icons

$$
\begin{aligned}
& \text { 却 级 त }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 光 }
\end{aligned}
$$

Performing Arts Icons

SEO \& Marketing Icons

$$
\begin{aligned}
& \text { (a) }
\end{aligned}
$$

Teamwork Icons

8 (0) 回 (ㅁ)

