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Understanding an arithmetic operation implies, at minimum, knowing the direction of effects that the
operation produces. However, many children and adults, even those who execute arithmetic procedures
correctly, may lack this knowledge on some operations and types of numbers. To test this hypothesis, we
presented preservice teachers (Study 1), middle school students (Study 2), and math and science majors
at a selective university (Study 3) with a novel direction of effects task with fractions. On this task,
participants were asked to predict without calculating whether the answer to an inequality would be larger
or smaller than the larger fraction in the problem (e.g., “True or false: 31/56 � 17/42 � 31/56”). Both
preservice teachers and middle school students correctly answered less often than chance on problems
involving multiplication and division of fractions below 1, though they were consistently correct on all
other types of problems. In contrast, the math and science students from the selective university were
consistently correct on all items. Interestingly, the weak understanding of multiplication and division of
fractions below 1 was present even among middle school students and preservice teachers who correctly
executed the fraction arithmetic procedures and had highly accurate knowledge of the magnitudes of
individual fractions, which ruled out several otherwise plausible interpretations of the findings. Theo-
retical and educational implications of the findings are discussed.

Keywords: fractions arithmetic, conceptual knowledge, mathematical development, mathematical cog-
nition, arithmetic

Mathematical knowledge during schooling predicts academic,
occupational, and financial success years later. Even after control-
ling for other cognitive and demographic variables, mathematics
achievement in high school is predictive of college matriculation,
college graduation, and early career income (Murnane, Willett, &
Levy, 1995). Especially striking, mathematics achievement at age
7 predicts socioeconomic status (SES) at age 42, even after statis-
tically controlling for SES at birth, reading achievement, IQ,
academic motivation, and years of education (Ritchie & Bates,
2013).

Among areas of mathematics, fractions (including decimals,
percentages, ratios, rates, and proportions) seem to be especially
important for later success. This central role is evident in fifth
graders’ fraction knowledge predicting their algebra knowledge
and overall mathematics achievement in tenth grade, a relation that

was present in both the U.K. and the U.S., even after controlling
for IQ, reading comprehension, working memory, knowledge of
whole number arithmetic, and parental education and income
(Siegler et al., 2012). Fraction understanding also is essential for a
wide range of occupations beyond science, technology, engineer-
ing and mathematics fields, including nurse, pharmacist, automo-
tive technician, stone mason, and tool and die maker (Davidson,
2012; McCloskey, 2007; Sformo, 2008).

The importance of fractions makes it especially unfortunate that
many children’s, adolescents’, and adults’ fraction understanding
is poor. On a recent National Assessment of Educational Progress
(NAEP), a test presented to a large nationally representative sam-
ple of U.S. students, only 50% of 8th graders correctly ordered
from smallest to largest 2/7, 5/9, and 1/12 (Martin, Strutchens, &
Elliott, 2007). Problems in understanding fraction magnitudes per-
sist into adulthood; community college students choose the larger
of two fractions on only about 70% of items, where chance is 50%
correct (Schneider & Siegler, 2010; Stigler, Givvin, & Thompson,
2010). Teachers recognize the seriousness of the problem: a sam-
ple of 1,000 U.S. high school algebra teachers rated knowledge of
fractions as one of the two largest weaknesses in their students’
preparation for their course, from among 15 topics in mathematics
(Hoffer, Venkataraman, Hedberg, & Shagle, 2007). Findings like
these led the U.S. National Mathematics Advisory Panel (NMAP)
to describe fractions as “the most important foundational skill not
presently developed” (NMAP, 2008) and led the National Council
of Teachers of Mathematics (NCTM), (2007) to emphasize the
importance of improving teachers’ and students’ understanding of
them. The problem is especially serious in the U.S., but it extends
to countries that rank high on international comparisons of math
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knowledge, including Taiwan and Japan (Chan, Leu, & Chen,
2007; Yoshida & Sawano, 2002).

In addition to their importance for educational and occupational
success, fractions are also crucial for theories of numerical devel-
opment. As noted in the integrated theory of numerical develop-
ment (Siegler, Thompson, & Schneider, 2011), learning fractions
requires differentiating properties of natural numbers from prop-
erties of rational numbers. Students need to learn that each natural
number has a unique successor but that infinitely many fractions
fall between any two other fractions; that, multiplying two natural
numbers never results in a product less than either factor (the
numbers being multiplied), but that multiplying two proper frac-
tions (fractions less than one) always does; and that dividing two
natural numbers never results in a quotient greater than the number
being divided, but dividing by a fraction less than one always does.
Indeed, one the few major properties uniting natural numbers and
fractions is that both express magnitudes that can be located and
ordered on number lines.

A variety of types of data are consistent with this theoretical
emphasis on numerical magnitudes. Accuracy of magnitude rep-
resentations, as measured by performance on number line and
magnitude comparison tasks, correlates consistently and quite
strongly with overall mathematics achievement with both whole
numbers (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007;
Siegler & Booth, 2004) and fractions (Siegler & Pyke, 2013;
Siegler, Thompson, & Schneider, 2011). Accuracy of numerical
magnitude representations also predicts achievement test scores in
later grades for both whole numbers (Geary, 2011; Watts, Duncan,
Siegler, & Davis-Kean, 2014) and fractions (Bailey, Hoard, Nu-
gent, & Geary, 2012; Jordan et al., 2013). Most important, mag-
nitude knowledge is causally related to other aspects of mathemat-
ical knowledge. Randomized controlled trials aimed at improving
knowledge of magnitudes produce gains not only in magnitude
knowledge but also in arithmetic with both whole numbers (Booth
& Siegler, 2008; Ramani & Siegler, 2008) and fractions (Fuchs et
al., 2013; Fuchs et al., 2014).

The present study expands the integrated theory of numerical
development beyond this emphasis on the central role of the
magnitudes of individual numbers to include the role of under-
standing the magnitudes produced by arithmetic. The two issues
show some striking similarities. For example, just as accuracy of
estimation of individual fractions’ magnitudes is related to math-
ematics achievement, so is estimation of the answers yielded by
fraction addition (Hecht & Vagi, 2010). However, despite the
parallel roles of magnitudes in the two areas, understanding indi-
vidual fractions does not imply understanding of the magnitudes
produced by fraction arithmetic.

Prior research has documented one type of misunderstanding of
fraction arithmetic: the whole number bias. This well-documented
error involves treating fraction numerators and denominators as
independent whole numbers, as when claiming that 1/2 � 1/2 �
2/4 (Gelman, 1991; Hecht & Vagi, 2010; Mack, 1995; Ni & Zhou,
2005; Stafylidou & Vosniadou, 2004; Van Hoof, Lijnen, Ver-
schaffel, & Van Dooren, 2013). Although striking, this error
occurs primarily among low-achieving students; for example, in a
study that examined fraction arithmetic of middle school students,
children whose achievement test scores were in the lowest one-
third of the distribution made such errors on 32% of trials, whereas
those whose achievement test scores were in the upper two-thirds

made them on only 10% of trials (Siegler & Pyke, 2013). The
frequency of such errors also decreases with age, falling from 25%
among sixth graders to 16% among eighth graders in the same
study.

In the present study, we examine a different type of misunder-
standing of fraction arithmetic: direction of effects errors. At
minimum, a person who understands an arithmetic operation
should know the direction of effects that the operation produces.
For addition and subtraction, the direction is the same for all
positive numbers: addition produces answers greater than either
addend, and subtraction produces answers less than the minuend
(the number being subtracted from). However, for multiplication
and division, the direction of effects depends on whether the
numbers in the problem are greater or smaller than one. Multiply-
ing numbers between zero and one always yields an answer less
than either number being multiplied, and dividing by a number
between zero and one always yields an answer greater than the
number being divided (the dividend). Such knowledge has been
studied with whole numbers (Baroody, 1992; Sophian & Vong,
1995) and has been claimed to be important with fractions, but to
the best of our knowledge, it has not been studied systematically
with fractions.

In principle, the directions of effects of arithmetic operations are
easy to understand. If people think of fraction multiplication as “N
of the M’s,” they should be able to predict the direction of effects,
regardless of whether N and M are natural numbers (e.g., will 6 of
the 4’s be more than 6) or proper fractions (e.g., will 1/6 of the 1/4
be more than 1/4). Similarly, if people understand division as the
number of times the divisor goes into the dividend, it should not be
hard to realize that a divisor between 0 and 1 will go into the
dividend more times than “1” would go into it, so the answer will
exceed the dividend.

In contrast, if people understand multiplication as an operation
that invariably increases the size of the numbers involved, and
division as an operation that invariably decreases their size, as is
the pattern with numbers greater than one, then they will perform
below chance when both factors are proper fractions (fractions
below 1) or the divisor is.

Note that mastery of fraction arithmetic procedures—the algo-
rithms or rules used to solve mathematical problems—could easily
coexist alongside weak or inaccurate conceptual understanding of
the procedures—implicit or explicit knowledge of how the proce-
dures work, why they make sense, and how they are related to
other procedures and concepts in the domain (Byrnes & Wasik,
1991; Hiebert & LeFevre, 1986; Rittle-Johnson & Schneider, in
press; Rittle-Johnson & Star, 2007). Simply put, students might
memorize fraction arithmetic procedures without understanding
them. This is more than a theoretical possibility. Many U.S.
teachers have weak conceptual understanding of fraction arithme-
tic (Lin et al., 2013; Ma, 1999; Moseley, Okamoto, & Ishida, 2007;
Rizvi & Lawson, 2007), which limits the understanding that they
can convey to students. In principle, students who correctly exe-
cute fraction arithmetic procedures could induce some types of
understanding by themselves. For example, they could infer that
multiplying fractions below 1 results in answers less than either
factor by connecting the magnitudes of the fractions being multi-
plied, the operation being performed, and the magnitudes of the
answers. However, many students might not make such connec-
tions, either due to not attending to the magnitudes of fractions in
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the problems or due to forgetting them while executing the pro-
cedure. Thus, accurately executing fraction arithmetic procedures
is no guarantee of understanding them.

The Present Study

Our main goal was to test the hypothesis that even many
educated adults with years of whole number and fraction arithme-
tic experience nonetheless lack conceptual understanding of mul-
tiplication and division. This was hypothesized to be true even for
people who execute fraction arithmetic procedures flawlessly and
who accurately represent fraction magnitudes. Conceptual under-
standing of arithmetic operations was measured by a direction of
effects task (e.g., Is N1/M1 � N2/M2 � N1/M1). This task, which
is novel to this study, had two advantages for assessing conceptual
understanding of arithmetic: it did not require highly accurate
knowledge of the magnitudes of individual numbers (none for
addition and subtraction; only whether each fraction exceeds one
for multiplication and division), and application of the present
analysis to it yielded eight predictions, one for each of the eight
combinations of arithmetic operation and fraction magnitude (fac-
tors greater than or less than one).

Our main prediction was that frequency of accurate judgments
would be below chance on multiplication and division problems
with fractions less than one. This was predicted to be true even for
people who flawlessly multiplied and divided fractions and who
accurately estimated the magnitudes of individual fractions. In
contrast, we also predicted that performance would be well above
chance on addition and subtraction problems, regardless of the
fractions involved, and on multiplication and division with frac-
tions greater than one. The reason was that on these problems,
either understanding the arithmetic operations or assuming that
fraction arithmetic yields the same patterns as natural number
arithmetic produces correct judgments.

These predictions were examined with three populations: pre-
service teachers attending a school of education, students attending
a middle school, and math and science majors at a highly selective
university. The preservice teachers attended a high quality college
of education in Canada and provided a test of the main hypothesis
with a sample of adults whose mathematical knowledge was above
average for adults in North America. The middle school students
were from a U.S. public school with typical achievement levels,
according to performance on state tests. They were included to test
whether the adults from Study 1 might have had conceptual
understanding of the arithmetic operations when they studied them
but forgotten that knowledge in the ensuing years. Finally, the
math and science majors at the highly selective university were far
above average in math achievement; including them tested
whether the direction of effects task would lead even highly
knowledgeable adults to perform poorly.

Study 1

Method

Participants. Participants were 41 preservice teachers (4 men,
37 women, Mean age � 25.9 years, SD � 8.8) recruited from a
French language public university in Montreal, Quebec, Canada.
All were in a mathematical activities course in a program aimed at

preparing them to teach kindergarten through sixth grade, a period
in which fractions are a major focus of mathematics instruction.
The teacher-training program was selective, with 53% of appli-
cants being admitted. Self-reported R scores, a statistical index
used in Quebec to measure incoming university students’ aca-
demic performance, were provided by 26 of the 41 participants.
Their scores were above the Quebec average of 25 (M � 28.87;
SD � 2.63 vs. M � 25, SD unknown) (CREPUQ, 2004). On the
2012 PISA, a test used to compare academic achievement of
different countries and regions within countries, Quebec had the
highest mean math achievement score of the 10 Canadian prov-
inces; its mean PISA math score equalled that of Japan, and far
exceeded that of the U.S. (CMEC, 2013).

Tasks. All measures were presented to the entire class in
pencil and paper form.

Conceptual understanding of fraction arithmetic. This was
measured by performance on the direction of effects task. On it,
participants were asked to evaluate the accuracy of mathematical
inequalities of the form a/b � c/d � a/b, where a/b was the larger
of the fractions and the operation was either addition, subtraction,
multiplication, or division. The fractions were chosen so that
numerators and denominators were too large for the problem to be
solved quickly via mental arithmetic. The fractions a/b and c/d
were either both above 1 or both below 1, and the operator was one
of the four arithmetic operators, resulting in eight types of prob-
lems. Participants were presented two instances of each of the 8
types of problems, for a total of 16 items. The same pairs of
operands, 31/56 and 17/42, 41/66 and 19/35, 37/19 and 58/36, and
51/16 and 47/33, were presented for all four arithmetic operations.

Each page of the booklet included four problems, which in-
cluded one instance of each arithmetic operation and one of each
pair of operands. Participants were instructed not to compute the
exact answer, but rather to decide, without calculating, whether the
answer would be greater than the answer indicated in the inequal-
ity.

Fraction arithmetic computations. Each participant was pre-
sented four problems for each of the four arithmetic operations.
For each operation, the operand 3/5 was combined with 1/5, 1/4,
2/3, and 4/5; for example, the subtraction problems were 3/5 – 1/5,
3/5 – 1/4, 2/3 – 3/5, and 4/5 – 3/5. Thus, all problems involved
positive fractions less than one. Half of the problems had operands
with equal denominators, and half with unequal ones. The larger
operand was always on the left for subtraction and division prob-
lems.

Magnitudes of individual whole numbers and fractions.
Knowledge of whole number magnitudes was measured by a
0–10,000 number line estimation task; knowledge of fraction
magnitudes was measured by 0–1 and 0–5 number line tasks. On
each trial, the number being estimated was printed above the
midpoint of a 16 cm horizontal line with 0 just below the left end
and 1, 5, or 10,000 just below the right end; the task was to mark
where the target number belonged on the number line. On the
whole number task, the target numbers were: 857, 1,203, 2,589,
3,091, 4,928, 5,762, 6,176, 7,334, 8,645, and 9,410. On the 0–1
fractions task, they were: 1/19, 1/7, 1/4, 3/8, 1/2, 4/7, 2/3, 7/9, 5/6,
and 12/13. On the 0–5 fractions task, they were: 1/19, 4/7, 7/5,
13/9, 8/3, 11/4, 10/3, 7/2, 17/4, and 9/2. On each magnitude
estimation task, one target number was in each 1/10 of the line.
Target fractions were also chosen to minimize correlations be-
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tween the magnitude of the numerator and the magnitude of the
whole fraction, so that basing placements solely on numerator
magnitude would not yield accurate answers.

Procedure. All tasks were printed in a booklet and presented
in a constant order: first the direction of effects task; then number
line estimation with whole numbers, 0–1 fractions, and 0–5 frac-
tions, in that order; and then fraction arithmetic. Two versions
were generated by reversing the order of items within each task.
The versions were randomly assigned to participants, who were
tested in groups in their classroom.

Results and Discussion

Conceptual knowledge of fraction arithmetic. A repeated
measures analysis of varianc (ANOVA) with Fraction Size (above
or below 1) and Arithmetic Operation (addition, subtraction, mul-
tiplication and division) as within-subject factors and number of
correct judgments as the dependent variable yielded effects of
fraction size F(1, 40) � 23.17, p � .001, �p

2 � 0.367, and
arithmetic operation F(3, 38) � 36.26, p � .001, �p

2 � 0.741, both
qualified by a Fraction Size � Arithmetic Operation interaction,
F(3, 38) � 6.24, p � .001, �p

2 � 0.330. As expected, post hoc
comparisons with the Bonferroni correction showed no differences
between number of correct judgments with proper and improper
fractions for addition (92% vs. 92%; t(40) � 0, p � 1; Hedges’
g � 0.00) and subtraction (89% vs. 92%; t(40) � 0.63, p � .53;
Hedges’ g � 0.00). However, large differences between fractions
below and above 1 were observed for multiplication (33% vs.
79%; t(40) � 3.90, p � .001; Hedges’ g � 1.11) and division
(29% vs. 77%; t(40) � 4.11, p � .001; Hedges’ g � 1.19).

Analysis of individual response patterns yielded similar results.
When considering all problems on the task, 42% of participants
were correct on 100% of the 12 problems involving improper
fractions and addition and subtraction of proper fractions, and on
0% on the four problems involving multiplication and division of
proper fractions. Only 3% (one participant) answered all 16 prob-
lems correctly.

Fraction arithmetic computations. A repeated measures
ANOVA with Arithmetic Operation as a within subject variable
and number correct as the dependent variable yielded an effect of
Arithmetic Operation F(3, 38) � 12.15, p � .001, �p

2 � 0.490. Post
hoc comparisons with a Bonferroni correction showed less accu-
rate performance on fraction division (M � 51%, SD � 46%) than
addition (M � 87%, SD � 25%; t(40) � 4.76, p � .001; Hedges’
g � 0.95), subtraction (M � 93%, SD � 18%; t(40) � 5.95, p �
.001; Hedges’ g � 1.17) and multiplication (M � 87%, SD �
23%; t(40) � 4.85, p � .001; Hedges’ g � 0.97).

The preservice teachers rarely made the type of computational
error predicted by the well-documented whole number bias (e.g.,
a/b � c/d � (a � b)/(c � d)). This error appeared on only 4.3%
of addition and subtraction trials. Thus, the inaccurate judgments
on the direction of effects task could not be attributed to the whole
number bias.

Number line estimation. Performance on the number line
tasks was measured by percent absolute error (PAE), computed as:
(|Estimate � Correct answer|) / Numerical Range � 100. Thus, if a
participant estimated the position of 1/4 to be 35% of the distance
between 0 and 1, PAE on that trial was 10% ((35 – 25)/100). The
higher the PAE, the less accurate the estimate. On the 3.3% of

trials on which participants did not respond, PAE was computed
using the value on the number line farthest from the correct answer
(e.g., if the problem was to locate 1/19 on a 0–5 fraction number
line, the estimate was computed as if it were at 5). This was done
to yield a maximally conservative estimate of estimation accuracy.
These trials occurred disproportionately among participants with
weak mathematical knowledge and on relatively difficult prob-
lems, so deleting the trials would have distorted the data.

The most striking number line estimation finding was that the
preservice teachers had excellent knowledge of the magnitudes of
fractions from 0–1, the same range in which they showed poor
conceptual knowledge of multiplication and division. Estimates of
fraction magnitudes in this range were as accurate as those for
whole numbers in the 0–10,000 range, with both being highly
accurate (for the 0–1 fraction task, Mean PAE � 4.41, SD � 3.07;
for the 0–10,000 whole number task, Mean PAE � 3.53, SD �
2.64). Estimates of fractions on the 0–5 task were less accurate
(Mean PAE � 14.94, SD � 18.67).

Relations of performance across tasks. Relations between
conceptual and procedural knowledge of arithmetic varied sub-
stantially on the four arithmetic operations (see Table 1). On
addition and subtraction, performance was strong on measures of
both conceptual knowledge (the direction of effects task) and
procedural knowledge (the arithmetic computation task); on mul-
tiplication, procedural knowledge was strong but conceptual
knowledge was weak; on division, both were weak.

The discrepancy between conceptual and procedural knowledge
of multiplication illustrated especially clearly that accurate execu-
tion of procedures does not imply understanding of their qualita-
tive effects. The majority of participants (17 of 29) who correctly
solved all four fraction multiplication problems erred on both of
the direction of effects problems that assessed understanding of
multiplication of proper fractions.

Although mean levels of performance on conceptual and pro-
cedural measures of division were similar, examination of individ-
ual participants’ performance revealed a similar dissociation. Of
participants who correctly answered all four of the fraction divi-
sion problems, 47% (8 of 17) were incorrect on both of the
direction of effects items that involved division of fractions below 1.

Correlations among individual participants’ performance on the
direction of effects, arithmetic computation, and number line es-
timation tasks with fractions 0–1 were nonsignificant in 5 of 6
cases, revealing a similar dissociation. For multiplication, number
of correct direction of effects judgments correlated r � .09 with
number of correct arithmetic computations; number of correct
direction of effects judgments correlated r � �.05 with number
line PAE; and number line PAE correlated r � �.04 with number
of correct arithmetic computations. For division, number of correct

Table 1
Percent Correct on Assessments of Procedural and Conceptual
Knowledge of Fraction Arithmetic: Pre-Service Teachers

Operation Procedural knowledge Conceptual knowledge

Addition 87 91
Subtraction 93 89
Multiplication 87 33
Division 51 30
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direction of effects judgments and arithmetic computations corre-
lated r � .33; number of correct direction of effects judgments and
number line PAE correlated r � �.11; and number of correct
arithmetic computations and number line PAE correlated r � �.22.

In summary, preservice teachers’ conceptual understanding of
fraction multiplication and division, as indicated by performance
on the direction of effects task, was weak. This was true even for
participants who flawlessly executed the fraction multiplication
and division algorithms. Nor was the problem lack of fraction
magnitude knowledge. Estimation of the magnitudes of fractions
between 0 and 1, the range that elicited incorrect judgments of the
qualitative effects of fraction multiplication and division, was
highly accurate. Instead, the results indicated weakness in concep-
tual understanding of fraction arithmetic that was not attributable
to weaknesses in knowledge of fraction arithmetic computation or
magnitudes of individual fractions.

Study 2

In Study 2, we examined whether the Study 1 results replicated
with a different population and age group: US. middle school
students. This population allowed us to test whether students
possess conceptual understanding of fraction arithmetic at the time
they receive instruction in it. If so, the difference might reflect
improvements in fraction instruction in the past decade, or it might
reflect the preservice teachers in Study 1 forgetting understanding
they once had. The first seemed plausible, because mathematics
instruction, in general, and fraction instruction, in particular, is
focusing increasingly on inculcating conceptual understanding
(NCTM, 2007). The latter interpretation also seemed plausible
because once children learn correct procedures, they might forget
the procedures’ conceptual justifications.

Method

Participants. Participants were 59 6th and 8th graders (28
boys, 31 girls, Mean age � 12.9 years, SD � 1.19) from middle-
income public schools near Pittsburgh.

Tasks. The same tasks were presented as in the previous
study, plus one new task, which involved asking whether each
fraction on the direction of effects task was greater or less than 1.
The purpose of this new task was to test whether failure to
discriminate the effects of multiplying fractions above and below
1 might be due to inability to identify whether the fractions were
above or below 1. This task was presented after the others, so it
could not affect performance on them.

Results and Discussion

Conceptual understanding of fraction arithmetic. As in
Study 1, a repeated measures Fraction Size � Arithmetic Opera-
tion ANOVA on the direction of effects task yielded main effects
of Fraction Size F(1, 58) � 49.071, p � .001, �p

2 � 0.458, and
Arithmetic Operation, F(3, 56) � 28.351, p � .001, �p

2 � 0.603,
both qualified by a Fraction Size � Arithmetic Operation interac-
tion, F(3, 56) � 19.07, p � .001, �p

2 � 0.505. Post hoc compar-
isons with the Bonferroni correction again showed no differences
between fractions below and above 1 for addition (89% vs. 92%;
t(58) � 1.36, p � .26; Hedges’ g � 0.09) and subtraction (92% vs.

94%; t(58) � 0.57, p � .57; Hedges’ g � 0.07), but large
differences between them for multiplication (31% vs. 92%;
t(58) � 8.16, p � .001; Hedges’ g � 1.74) and division (47% vs.
70%; t(58) � 2.24, p � .05; Hedges’ g � 0.51). Also as in Study
1, a fairly substantial number of participants (29%) were correct on
100% of the 12 problems involving fractions above 1 or addition
and subtraction of fractions below 1 and on 0% of the four
problems involving multiplication and division of fractions below
1, and few participants (5 of 59) answered all problems correctly.

Fraction arithmetic computations. A repeated measure
ANOVA with Arithmetic Operation as the sole variable yielded no
significant effect. The children’s performance on addition (78%),
subtraction (83%), multiplication (81%), and division (82%) did
not differ.

Number line estimation. Number line estimates were very
accurate for whole numbers in the 0–10,000 range (Mean PAE �
4.08, SD � 1.67), fractions in the 0–1 range (Mean PAE � 3.57,
SD � 2.05), and fractions in the 0–5 range (Mean PAE � 6.28,
SD � 3.50).

These middle school students also were correct on 97% of
judgments about whether the specific fractions on the direction of
effects task were above or below 1. Thus, the poor performance on
multiplication and division of fractions below 1 could not be
explained by students lacking the magnitude knowledge required
to perform well on it.

Relations of performance across tasks. As in Study 1, there
was a clear dissociation between conceptual and procedural
knowledge of fraction arithmetic (Table 2). Analysis of individual
performance showed that among children who correctly solved all
four of the fraction multiplication computation problems, 54% (19
of 35) erred on both direction of effects items for multiplication of
fractions below 1. Similarly, among children who correctly solved
all four fraction division computation problems, 39% (16 of 41)
erred on both problems measuring understanding of division of
proper fractions. Thus, with children as with adults, successful
execution of fraction arithmetic computations was no guarantee of
understanding the procedures.

Analyses of correlations among individual children’s perfor-
mance on the three tasks with fractions 0–1 yielded nonsignificant
relations in all six cases. For multiplication, number of correct
direction of effects judgments correlated r � .16 with number of
correct arithmetic computations; number of correct direction of
effects judgments correlated r � �.10 with number line PAE; and
number line PAE correlated r � �.20 with number of correct
arithmetic computations. For division, number of correct direction
of effects judgments and arithmetic computations correlated r �
.13; number of correct direction of effects judgments and number
line PAE correlated r � �.17; and number of correct arithmetic
computations and number line PAE correlated r � �.13.

Table 2
Percent Correct on Assessments of Procedural and Conceptual
Knowledge of Fraction Arithmetic: Middle School Students

Operation Procedural knowledge Conceptual knowledge

Addition 78 89
Subtraction 83 92
Multiplication 81 31
Division 82 47
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Study 3

An alternative interpretation to the results of Studies 1 and 2 was
that the direction of effects task could not be understood, even by
people who had strong mathematics understanding. To test this
interpretation, we presented university students with very high
mathematics achievement scores the same tasks and items as were
presented in the previous two studies. The main prediction was that
these students’ deeper understanding of mathematics would allow
them to consistently answer correctly all of the problems that
examined conceptual understanding of fraction arithmetic.

Method

Participants. Participants were 17 undergraduate students (7
men, 10 women, Mean age � 19.9 years, SD � 1.3) majoring in
computer science, engineering, physics, chemistry, or biology at a
highly selective university. Self-reported SAT mathematics scores
for the 16 of 17 students who reported them were in the 99th
percentile (M � 778, SD � 23.73), a score consistent with mean
SATs in these areas at the university.

Tasks and procedures. The tasks and procedures were iden-
tical to those in Studies 1 and 2, except that participants were
tested individually or in pairs.

Results and Discussion

Conceptual knowledge of fraction arithmetic. Percent cor-
rect on the direction of effects task was very high on all eight types
of problems (94% to 100% correct judgments, overall M � 98%).
A Fraction Size � Arithmetic Operation ANOVA, parallel to that
in the first two studies, yielded no main effect or interaction. Most
participants (77%) were correct on all 16 problems, none made
more than two errors, and the few errors were unsystematically
distributed across problems.

Fraction arithmetic computations. Performance on all four
operations was at ceiling, ranging from 97% correct for multipli-
cation to 100% correct for addition and subtraction (overall M �
99%). Thus, as shown in Table 3, both conceptual and procedural
knowledge of arithmetic were uniformly excellent.

Number line estimation. These students’ estimates were
highly accurate on all three ranges: whole numbers from 0–10,000
(Mean PAE � 2.78, SD � 1.30), fractions from 0–1 (Mean PAE �
2.87, SD � 1.87), and fractions from 0–5 (Mean PAE � 4.17,
SD � 2.28).

Thus, results of Study 3 showed that students highly proficient
in math exhibited strong conceptual understanding of fraction

arithmetic. This ruled out the interpretation that the task precluded
accurate judgments.

General Discussion

Middle school students and preservice teachers demonstrated
excellent understanding of the magnitudes of individual fractions
between 0 and 1. However, the same middle school students and
preservice teachers demonstrated minimal understanding of the
magnitudes produced by multiplication and division of fractions in
the same range. They consistently predicted that multiplying two
fractions below “1” would yield an answer greater than either
factor and that dividing by a fraction below “1” would yield an
answer smaller than the number being divided.

Additional results from the present study ruled out a variety of
otherwise plausible explanations of these findings from the direc-
tion of effects task. The incorrect predictions on it were not due to
the task being impossible; mathematics and science majors at a
selective university performed almost perfectly on the same task.
The incorrect predictions also were not due to the previously
documented tendency to view fraction arithmetic in terms of
independent combinations of the numerators and of the denomi-
nators. Participants showed such independent whole number errors
on fewer than 10% of trials when solving fraction arithmetic
problems (4.3% of addition and subtraction trials in Study 1 and
8.5% in Study 2), but erred on more than 70% of trials on the
direction of effects task with multiplication and division of frac-
tions below 1. Inaccurate predictions on the direction of effects
task also could not be attributed to lack of knowledge of individual
fraction magnitudes or of how to execute fraction arithmetic pro-
cedures. The preservice teachers in Study 1 generated extremely
accurate estimates of the magnitudes of individual fractions and
consistently solved fraction multiplication problems, yet they
judged the direction of effects of fraction multiplication less ac-
curately than chance. The results also suggested that inaccurate
judgments on the direction of effects task could not be attributed to
forgetting material taught years earlier. Sixth graders who had
been taught fraction division in the same academic year and
fraction multiplication one year earlier also performed below
chance on the direction of effects task for these operations and
numbers (30% correct for multiplication and 41% correct for
division). These data from U.S. middle school students do not rule
out the possibility that these Canadian preservice teachers had
forgotten relevant knowledge that they once had, but the data do
make this possibility less likely.

One important unanswered question was whether the below
chance performance was specific to common fractions or more
general. To address this question, we conducted a pilot study on
understanding of multiplication and division of decimals between
0 and 1. Ten arbitrarily chosen students from the same university
as the preservice teachers were presented the direction of effects
task with decimals. Each common fraction from the direction of
effects task was translated into its nearest 3-digit decimal equiv-
alent (e.g., “31/56 � 17/42 � 31/56” became “0.554 � 0.405 �
0.554). The results with decimals closely paralleled those with
common fractions: High accuracy (88% to 100% correct) on the
six problem types in which fraction arithmetic produces the same
pattern as natural number arithmetic, and below chance perfor-
mance on the two problem types that showed the opposite pattern

Table 3
Percent Correct on Assessments of Procedural and Conceptual
Knowledge of Fraction Arithmetic: Math and Science Majors at
a Selective University

Operation Procedural knowledge Conceptual knowledge

Addition 100 100
Subtraction 100 97
Multiplication 97 100
Division 99 97
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as natural numbers (38% correct on multiplication and 25% correct
on division of decimals below 1). Thus, the inaccurate judgments
on the direction of effects task were general to multiplication and
division of numbers from 0 to 1, rather than being limited to
common fractions in that range.

Theoretical Implications

As noted in previous studies, understanding fractions requires
recognizing that many properties of natural numbers are not prop-
erties of numbers in general (Siegler et al., 2011). The present
study makes a related but different point: understanding fraction
arithmetic requires recognizing that many properties of natural
number arithmetic are not properties of arithmetic in general.
Although understanding individual fraction magnitudes and frac-
tion arithmetic both require distinguishing properties of natural
numbers from properties of all numbers, understanding the mag-
nitudes of individual fractions does not imply understanding how
fraction arithmetic operations transform those magnitudes.

The present findings also shed light on the sources of two types
of common errors in fraction arithmetic (Siegler & Pyke, 2013).
One involves inappropriately importing procedures from other
fraction arithmetic operations into fraction multiplication. This
leads to errors such as 3/5 � 4/5 � 12/5, in which the numerators
of the two fractions are multiplied but the denominator is un-
changed, as in addition and subtraction of fractions (e.g., 3/5 �
4/5 � 7/5). The other common error involves dividing fractions by
inverting the numerator and multiplying (e.g., 2/3 	 1/3 � 3/2 �

1/3 � 3/6 � 1/2) rather than inverting the denominator and
multiplying (e.g., 2/3 	 1/3 � 2/3 � 3/1 � 6/3 � 2). The present
results suggest that weak understanding of the numerical magni-
tudes produced by fraction multiplication and division prevents
people from rejecting these incorrect procedures on the basis that they
yield implausible answers. Indeed, if learners believe that multiplica-
tion yields answers greater than either factor and that dividing yields
answers smaller than the dividend, incorrect answers will often
seem more plausible than correct ones. A student who believes that
multiplication should always yield answers larger than either fac-
tor might well view, “3/5 � 4/5 � 12/5,” as more plausible than the
correct answer, “3/5 � 4/5 � 12/25.”

The present findings narrowed the range of potential explana-
tions of weak conceptual understanding of fraction multiplication
and division, but left open at least two interpretations of the
underlying difficulty. One possibility is that many children and
adults have a specific belief that arithmetic operations produce the
same direction of effects regardless of the numbers involved. In
particular, they might believe that for all numbers, addition and
multiplication yield answers greater than either operand, and sub-
traction and division yield answers smaller than the larger operand.
Such a belief would reflect a conclusion based on the pattern of
answers yielded by natural number arithmetic. Each natural num-
ber operation has the same direction of effects regardless of the
numbers in the problem (excepting multiplication and division by
1, which are often explicitly described as “exceptions”). Illustra-
tive of this logic, when asked to “Try to explain what 1/2 	 1/4
means,” a sixth grader in a pilot study wrote “You’re making 1/2
1/4 times smaller than it was”; when asked to explain what 1/2 �

1/4 means, the child wrote “You are making 1/2 1/4 times bigger.”

An alternative interpretation is that many people have no strong
beliefs about the results yielded by multiplication and division of
fractions, and therefore rely on the pattern with natural numbers as
a default option. Within this interpretation, which resembles one
proposed for some preservice teachers by Simon et al. (2010),
participants applied their understanding of natural number arith-
metic to the direction of effects task with fractions not because
they were convinced that this was correct but because they did not
know what else to do. Relying on default knowledge may be quite
common in situations where people lack understanding but need to
do something. For example, if asked how a catalytic converter
works, many people might rely on knowledge of how air condi-
tioning filters work, not because they are convinced that catalytic
converters work that way, but due to inability to generate a better
explanation (see Rozenblit & Keil, 2002, for extensive documen-
tation of such default explanations). Consistent with this interpre-
tation, Ma (1999) found that most U.S. teachers in her study could
not generate any explanation of what 1 3/4 	 1/2 means, or
resorted to explaining a different problem (1 3/4 	 2). Similarly,
an eighth grader in the pilot study mentioned in the previous
paragraph explained 1/2 � 1/4 by writing “It means taking half a
pie, 1/4 of another pie, and showing how much you’d get” and
could not generate any explanation of the meaning of 1/2 	 1/4.
Obtaining confidence ratings regarding direction of effects judg-
ments could help discriminate between these two interpretations.

Another unresolved issue is whether the weak understanding is
specific to fraction multiplication and division or whether it ex-
tends to all multiplication and division. Consistent with the view
that the difficulty is specific to fractions, children often provide
reasonable explanations of natural number multiplication and di-
vision. They explain natural number multiplication in terms of
repeated addition (Lemaire & Siegler, 1995) and natural number
division in terms of either multiplication (72 	 8 � 9 because 8 �

9 � 72) or repeated addition (72 	 8 � 9 because adding 9 eight
times � 72) (Robinson et al., 2006). However, teachers often
explain multiplication and division in these ways, so children
might just be repeating what they have been told and might not
have as deep an understanding of multiplication and division as
these explanations suggest (Dubé & Robinson, 2010; Robinson &
Dubé, 2009). Investigating in greater depth people’s understanding
of multiplication and division with natural numbers as well as
fractions, and analyzing how the two are related, seems a prom-
ising route for future research.

Educational Implications

Results of Studies 1 and 2 indicated that even people with very
accurate knowledge of fraction arithmetic procedures and magni-
tudes of individual fractions often possess weak conceptual under-
standing of multiplication and division of fractions below 1. These
findings are consistent with previous results from mathematics
education research (Heller Post, Behr, & Lesh, 1990; Lamon,
2007) as well as the recommendations of mathematics education
organizations (e.g., NCTM, 1989), and point to the need to ex-
plicitly teach qualitative reasoning about fraction arithmetic (Behr,
Harel, Post, & Lesh, 1992; Huinker, 2002).

A related straightforward instructional implication is that teach-
ers and textbooks should emphasize that multiplication and divi-
sion produce different outcomes, depending on whether the num-
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bers involved are greater than or less than 1, and should discuss
why this is true. Chinese textbooks include such instruction. For
instance, in a lesson on multiplication with decimals, Chinese
students are asked to solve and discuss answers to the following
three problems: 4.9 � 1.01; 4.9 � 1 and 4.9 � 0.99 (Sun & Wang,
2005). The same could be done with triads of fractions, such as 1/2
� 8/7, 1/2 � 7/7, and 1/2 � 6/7. Such well-chosen problems and
accompanying discussion are likely to create meaningful and
memorable knowledge of the effects of multiplying by numbers
above and below one.

Another instructional implication is that teachers and textbooks
should focus more attention on the shifting meaning of wholes in
the context of fraction arithmetic. For example, when asked to use
multiplication to find what 1/2 of 1/4 of a pie is, the relevant whole
for 1/4 is the whole pie, but the relevant whole for 1/2 is the 1/4
of the pie. Several investigators have noted that many students fail
to gain such understanding of wholes in the context of fraction
arithmetic and have suggested means for remedying the difficulty
(Ball, 1990; Simon, 1993; Tobias, 2013). Instruction that success-
fully inculcates such understanding would provide a strong foun-
dation for efforts to teach children what fraction multiplication
means.

A further instructional implication is that instruction should
emphasize understanding of commonalities uniting the processes
of whole number and fraction arithmetic. One approach to attain-
ing this goal is to adopt linguistic phrasings of multiplication and
division that promote recognition that these operations have the
same meaning with whole and with rational numbers. For instance,
multiplication of two fractions (e.g., 1/3 � 1/5) can be expressed as
“How much is 1/3 of the 1/5”; multiplication of a whole number
and a fraction as “How much is 1/5 of the 3”; and multiplication
of two whole numbers as “How much is 5 of the 3’s.” Using this
phrasing of multiplication first with two whole numbers, then with
a whole number and a fraction, and then with two fractions might
be especially effective for promoting analogies from better to less
understood cases, an instructional strategy that has proved effec-
tive in many domains (Gentner & Holyoak, 1997). Illustrating the
multiplicative process in all cases in the common format of a
number line might deepen understanding of multiplication further,
by providing spatial as well as verbal support for a shared repre-
sentation. Discussing with students why multiplying two numbers
below 1 always results in an answer less than one, why multiplying
two numbers above 1 always results in an answer greater than 1,
and why multiplying a number less than 1 by a number greater
than 1 sometimes results in one outcome and sometimes in the
other could deepen understanding further.

A similar, though somewhat more complex, approach could be
used with division. Students could be encouraged to first judge
whether the problem involves dividing a larger by a smaller
number or dividing a smaller by a larger number. If the problem
involves division of a larger by a smaller number, for example,
5/8 	 1/8, students could be encouraged to think of the problem as
“How many times can N go into M” (e.g., “How many times can
1/8 go into 5/8”). If the problem involves division of a smaller by
a larger number, such as 1/8 	 5/8, students could be encouraged
to think of the problem as “How much of N can go into M” (e.g.,
“How much of 5/8 can go into 1/8”). As in multiplication, these
phrasings can be applied to whole numbers as well as fractions
(“How many times can 8 go into 48” “How much of 48 can go into

8”), and it seems likely to prove useful to proceed from using each
phrasing first with two whole numbers, then with a whole number
and a fraction, and then with two fractions (maintaining whether
the problems involve a larger number divided by a smaller number
or the opposite). Also as in multiplication, these phrasings lend
themselves to a common spatial representation of the workings of
the operation on a number line.

We believe that these alternate phrasings provide a clearer
indication of what multiplication and division mean than the usual
phrasings. Their applicability to both natural numbers and frac-
tions seems a promising way of helping students understand that
the mathematical operations have the same meaning in both cases,
though their effects on numerical magnitudes vary with the num-
bers involved. We plan to test the efficacy of these instructional
ideas in the near future.

Limitations and Future Research Directions

The present study has several limitations, each of which sug-
gests directions for future research. Perhaps the most important
limitation is that the present study examined only one aspect of
understanding of fraction arithmetic—the direction of effects of
fraction arithmetic operations. Future research should also exam-
ine other aspects of conceptual understanding of fraction arithme-
tic, including the approximate magnitudes produced by fraction
arithmetic operations, the correspondences that can be drawn be-
tween fraction arithmetic operations and models of their effects,
and the varying wholes that correspond to the operands in fraction
arithmetic problems.

A second limitation is that the study did not relate the fraction
instruction that students had received to their conceptual and
procedural knowledge of fraction arithmetic. Of particular interest
for future research is determining whether children who receive
conceptually oriented fraction instruction subsequently show su-
perior conceptual understanding of fraction arithmetic and also
superior knowledge and memory of the fraction arithmetic proce-
dures.

A third limitation of the present research is that the three
samples in the three studies came from different schools in differ-
ent countries, and might well have received different fraction
instruction. This left open the possibility that the Canadian adults
might previously have better understood fraction multiplication
and division, even though neither they nor the U.S. 6th and 8th
graders, who had recently received relevant instruction, showed
such conceptual understanding. A longitudinal study tracking the
same people over time would be ideal for determining if, and to
what extent, such loss of earlier conceptual knowledge occurred.
The present findings that conceptual understanding of fraction
multiplication and division is weak, even among children and
adults who have excellent knowledge of fraction magnitudes and
arithmetic procedures, suggest that addressing these issues would
be worthwhile.
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Correction to Siegler and Lortie-Forgues (2015)

In the article “Conceptual Knowledge of Fraction Arithmetic” by Robert S. Siegler and Hugues
Lortie-Forgues (Journal of Educational Psychology, Advance online publication. January 19, 2015.
http://dx.doi.org/10.1037/edu0000025), there were two rounding errors in Table 1. The value 91 in
the upper-right corner should be changed to 92, and the value 30 in the bottom-right corner should
be changed to 29. Table 1, 2, and 3 also refer only to fractions between 0 and 1, and not fractions
above one.
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