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Abstract. The fast advancements in sensor data acquisition and vehicle telematics facilitate data collection from taxis and thus,
enable building a system to monitor and analyze the citywide taxi service. In this paper, we present a novel and practical system
for taxi service analytics and visualization. By utilizing both real time and historical taxi data, the system conducts the estimation
on region based passenger wait time for taxi, where recurrent neural network (RNN) and deep learning algorithms are used to
build a predictive model. The built RNN-based predictive model achieves 73.3% overall accuracy, which is significantly higher
than other classic models. Meanwhile, the system conducts the analytics on the taxi pickup hotspots and trip distributions. The
experimental results show that around 97% trips are accurately identified and more than 200 hotspots in the city are successfully
detected. Moreover, a novel three dimensional (3D) visualization together with the informative user interface is designed and
implemented to ease the information access, and to help system users to understand the characteristics and gain insights of the
taxi service.
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1. Introduction

In densely populated large cities, especially in Asia,
taxis are pervasively used in people’s daily life, such
as for individual travels between home and office dur-
ing working days, family travels for shopping and din-
ing during weekends, or foreign tourists visiting lo-
cal attractions, etc. The pervasive taxi usage easily re-
sults in the spatiotemporal imbalance of taxi supply
and demand, as well as the complexity of taxi oper-
ation patterns. Proper estimations on such imbalance
and complex patterns would not only benefit the lo-
cal taxi operators and passengers, but also help rele-
vant government agencies to improve taxi service qual-
ity and eventually increase the productivity of citywide
taxi service.

On the other hand, the abundance of taxi informa-
tion, such as the taxi’s real time GPS locations and
operation status, becomes available and can be col-
lected through the in-vehicle telematics system. For
example, all the taxis in Singapore periodically up-
date their locations, status (e.g., FREE or ONCALL,
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etc.) and other operation related information to the
backend system. Such taxi data would directly help to
extract the key information for desired analytics sys-
tems.

A number of previous studies attempt to utilize taxi
information to address the critical analytics issues,
typically including the prediction of taxi demand at
taxi stand [26], recommendation of next-passenger for
taxi driver [19], and recommendation of empty-taxi
for passenger [28]. However, the previous studies of-
ten simply quantify the taxi demand using the his-
torical pickups, while the actual taxi demand in re-
ality is often constrained by the corresponding sup-
ply. Moreover, the previous studies seldom investi-
gate and model the relationships and imbalance be-
tween taxi supply and demand. In addition, there is a
lack of a well designed visualization and user inter-
face to enable the system users to quickly understand
the taxi analytics results and easily gain the hidden in-
sights.

In this work, we endeavour to tackle and address
the above issues, by considering the dynamic relation-
ships between taxi supply and demand, and meanwhile
leverage on the latest machine learning techniques,
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namely RNN with deep learning algorithms. We sum-
marize the key contributions of this work as follows:

− We propose and implement a novel and practi-
cal system, utilizing both of the historical and real
time taxi data, to conduct the analytics on the key
perspectives of the taxi service, including the wait
time estimation for the passengers, taxi hotspot
detection, and trip extraction.

− We derive novel and effective features from
the large scale taxi data, and use such features
to build predictive model. The model is mainly
used to estimate the region based passenger wait
time, where the recurrent neural network (RNN)
model and GPU based deep learning computa-
tional framework are investigated and applied
successfully.

− We design a novel 3D visualization and informa-
tive user interface to help to access and under-
stand the analytics results.

The rest of this paper is organized as follows: the re-
lated work is given in Section 2, and Section 3 presents
the overall system architecture as well as the data col-
lection. Sections 4, 5 and 6 depict the four modules in
details respectively. System evaluation is conducted in
Section 7, and we conclude our work in Section 8.

2. Related work

Driven by the availability of abundant information
from taxis, taxi trace analytics has received massive
attentions from both academia and industry in recent
years. The relevant work can be generally classified
into three categories: 1) mining taxi traces to study
the city population movement patterns and behav-
iors [23,26]; 2) using taxi traces as a probe to infer or
predict traffic conditions for city road networks [3,20];
3) mining taxi traces to discover and sense human or
vehicle’s special events and behaviors [24,37]. For ex-
ample, the authors in [37] utilize taxi traces to sense
vehicle refueling behavior and citywide consumption.
We refer the interested readers to a good survey [6] for
taxi trace analytics.

RNN is one branch of neural networks and a pow-
erful model for sequential data. Initially the vanish-
ing gradient problem [4] and unmatched computational
power limited its capabilities on solving real-life appli-
cations. In recent years, the long short-term memory
(LSTM) [15] units partially solve the vanishing gradi-
ent problem and the GPU based computing architec-

tures [31] significantly reduce training time of RNN.
RNN has been widely used in a variety of tasks to sup-
port sequential data, including speech recognition [30],
handwriting recognition [9], machine translation [21],
etc. The deep RNNs, which combines multiple lev-
els of representation, have proved so effective in deep
networks with the flexible use of long range context.
Alexandre et al. [8] adopt RNN, which consists of two
hidden layers, to make predictions on taxi destinations
based on the beginning of the taxi trajectory.

For the hotspot detection, the density-based cluster-
ing has been applied by analyzing the vehicle trajec-
tories [17,29], and a variety of the existing algorithms
can be used, such as CLARANS [27], CURE [14] and
DBSCAN [13]. In this work, we also adopt the density-
based clustering algorithm (i.e., DBSCAN) to conduct
the hotspot detection task, but combine with the taxi
trip extraction results to dynamically provide both the
pickup and dropoff hotspots.

Visualization is an important tool to help people
understand the data and the analytics results, espe-
cially for the large amounts of moving and trajectory
data [38]. Adrienko et al. [1] proposes a framework
for analysis by combining interactive visual displays
with database operations and computational methods,
and it effectively supports human perception, cogni-
tion, and reasoning. The animated maps [10], interac-
tive cubes [16] as well as the aggregation-based tech-
niques such as temporal histogram [11], are widely
used to visualize moving and trajectory data. We adopt
the similar design philosophy but innovate in using the
3D visualization techniques to describe our taxi ana-
lytics results in a dynamic way, especially for the ex-
tracted taxi trips and the predicted passenger wait time.

To the best of our knowledge, it is the first work ap-
plying RNN-based model to conduct the taxi passen-
ger wait time estimation, although another RNN-based
model has been applied to solve the taxi destination
predication problem [8]. Moreover, a specifically de-
signed 3D visualization solution with an informative
user interface is designed and implemented, which ef-
fectively help users to access the key taxi analytics re-
sults, including wait time, trips and hotspots.

3. System design

3.1. System overview

The proposed system targets on conducting the ana-
lytics on the key aspects of taxi service and meanwhile
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Fig. 1. Block Diagram of the taxi analytics and visualization System.

visualizing the critical analytics results, where both the
historical and real time taxi data are utilized. The sys-
tem mainly consists of three analytics modules and a
3D visualization module, and the analytics modules are
used for wait time estimation for the passengers, taxi
hotspot detection and taxi trip extraction respectively.

The system block diagram is shown in Fig. 1, and
the general descriptions of the four modules are given
as follows.

− Wait Time Estimation Module: the main objective
of the module is to make the prediction on passen-
ger wait time at different regions. We derive the
novel and effective key features, which include
the FREE taxi taken (FTT) probability and taxi
booking ratio (TBR), from taxi data to build the
predictive model. We divide the passenger wait
time into four levels as the outputs of the predic-
tive model, namely severe (above 10 mins), long
(5 to 10 mins), reasonable (2 to 5 mins), and short
(below 2 mins), which have been summarized in
Table 1. We will elaborate the feature extraction,
model training, and other key issues for this mod-
ule in Section 4.

Table 1

Four Levels of Passenger Wait Time

Model Output Short Reasonable Long Severe

Passenger Wait Time (min) Below 2 (2, 5] (5, 10] Above 10

− Trip Extraction Module: this module mainly
identifies and extracts the taxi trip information
from the large scale taxi data. One trip is typically
a taxi’s sub-trajectory with a sequence of specific
taxi state transitions. We thus design a dedicated
algorithm to conduct the trip extraction, which
will be elaborated in Section 5. The extracted trips
and their distributions may directly illustrate the
citywide taxi operating patterns. Moreover, the
extracted trip information, especially their origin
and destination locations, also serves as the key
inputs for the hotspot detection and other analyt-
ics tasks.

− Hotspot Detection Module: this module detects
both the pickup hotspots and dropoff hotspots,
and we mainly take the pickup hotspots as an ex-
ample in this paper. Pickup hotspots are the fre-
quent taxi pickup locations, which usually emerge
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Fig. 2. A simplified telematics system with MDT on a Taxi.

when a high taxi demand occurs. The pickup
hotspots may exist at any legal parking places and
vary temporally and spatially. By leveraging on
the extracted pickup locations, we design a spe-
cific algorithm to detect the taxi pickup hotspots,
which will be described in Section 6.

− 3D Visualization Module: this module mainly
provides users an intuitive and interactive way to
access and understand the analytics results from
the above three modules. We adopt the 3D visual-
ization techniques to dynamically depict the spa-
tial and temporal information from multiple per-
spectives. To facilitate the interaction between the
system and its users, the 3D map can be freely ma-
nipulated using mouse or touch screen with differ-
ent control components. The details of this mod-
ule will be given in Section 6 as well.

3.2. Data collection

As shown in Fig. 1, the system inputs are mainly the
collected data from individual taxis. The taxi data col-
lection is mainly leveraging on a specific device, called
mobile data terminal (MDT), which has been installed
on nearly all 26,000 taxis in Singapore. Figure 2 simply
depicts a data collection system on a taxi, where MDT
is hardwired directly to different on-vehicle devices,
including taxi meter, roof-top signs. Moreover, it also
provides taxi drivers a multifunctional touch screen to
manually input and receive other key information, such
as the taxi booking information.

During a taxi’s daily operation, the MDT keeps col-
lecting taxi’s real time GPS locations, speed, and taxi
states. The typical taxi states include FREE (available
for passenger), ONCALL (booked by passenger), POB
(passenger on board), and PAYMENT (passenger mak-
ing payment). All the data collected by MDT can be

Table 2

Selected Fields of MDT Message with a Sample

Timestamp Taxi ID Longitude Latitude Speed Taxi State

01/08/2016
19:04:51

SH0001A 103.7999 1.33795 54 POB

transmitted to the backend database either online or of-
fline, where the online transfer is mainly relying on the
3G or GPRS communication. Table 2 gives the selected
fields in an MDT message, which consists of 6 fields:
timestamp, taxi ID, GPS location, instantaneous taxi
speed, and taxi state. More details of the MDT system
and the related information can be found in [24].

4. Wait time estimation module

It is a challenging problem to estimate the passenger
wait time, as the passenger behaviors are not directly
observable from taxi data at any given region. There-
fore, it is necessary to find out some effective features
that can help to infer passenger wait time. By observ-
ing the taxi operating and passenger waiting behaviors,
multiple features are proposed and derived, where two
key features are most effective, namely free taxi taken
(FTT) probability and taxi booking ratio (TBR).

Briefly speaking, FTT probability captures how fast
an available taxi is taken in a given region, where a
large FTT value indicates that it is relatively easy for
a FREE taxi to meet passengers in that region. TBR
captures the fact that passengers would make a booking
for taxi when it is hard to hail down a FREE one on the
street. Thus, a high booking ratio is very likely caused
by the long wait time of passengers in that region. In
this section, we firstly derive the above two features,
and then introduce the built model for passenger wait
time estimation.

4.1. FREE taxi taken (FTT) probability

FTT probability is mainly motivated by the idea that
a free taxi would have a high probability to meet a pas-
senger when the high taxi demand coexists with the
low taxi supply at a given region. Figure 3 shows a
FREE taxi enters and exits a region with different sup-
ply and demand situations, where the green color and
red color denotes FREE and POB, respectively.

Assuming a number of waiting passengers are uni-
formly distributed inside a given region, while a FREE
taxi enters the region and keeps cruising. The larger
number of waiting passengers means the higher den-
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Fig. 3. A FREE Taxi under Different Situations.

sity of the taxi demand, and consequently the FREE
taxi will meet its passengers in a shorter time period.
The FTT probability is used to capture how fast a ran-
dom taxi can be taken by a passenger in the region: let
p be the probability that a FREE taxi meets a passen-
ger within one time unit (e.g., one minute); meanwhile,
we define a 2-element tuple, denoted as 〈x, y〉, for the
same taxi, where x is the number of time unit that taxi
keeps FREE, and y is a binary variable either 1 or 0,
where y = 1 if taxi status turns into POB inside the
region, and y = 0 if the taxi turns into other state (ex-
cept POB) or leaves the region with the original FREE
state.

Briefly speaking, the variable x and y are used to
jointly describe a taxi behavior in a given region: x

describes how long a taxi available inside the region,
and y describes whether a taxi gets a passenger inside
that region. For example, if a taxi keeps FREE for 5
minutes and gets a passenger at the 6th minute, 〈x, y〉
would be set to 〈5, 1〉; if a taxi keeps FREE for 5 min-
utes and leave the region at the 6th minute without any
passenger, 〈x, y〉 would be set to 〈5, 0〉. Each taxi in-
side the region would have such a pair of x and y, and
we use this information to estimate the FTT probability
for that region.

Accordingly, we have the probability of a FREE taxi
with 〈x, y〉 conditioning on p:

Pr
(〈x, y〉|p) = (1 − p)xpy.

Given D as all the tuples derived from the buffered
real time taxi data, i.e., D = {〈x1, y1〉, 〈x2, y2〉, . . . ,
〈xn, yn〉}, we have the likelihood function of p:

L(p|D) =
n∏

i=1

(1 − p)xi pyi ,

and the corresponding log-likelihood function

log L(p|D)

=
(

n∑
i=1

xi

)
log(1 − p) +

(
n∑

i=1

yi

)
log p.

We then maximize its log-likelihood function by let-
ting its derivative to be zero:

d(log L(p|D))

dp
= − ∑n

i=1 xi

1 − p
+

∑n
i=1 yi

p
= 0,

and hence we have the estimation of p:

p =
∑n

i=1 yi∑n
i=1 xi + ∑n

i=1 yi

.

Based on the above formula, we can calculate the
FTT probability p for any region during a given time
window. To help understand the above formula, we
firstly show two extreme cases:

1. Suppose no passenger waiting inside the region
during the given time window, all the FREE taxis
would NOT change to the POB state. Hence,
yi = 0 for any i, which leads to p = 0;

2. Suppose a large number of passengers waiting
inside the region during the given time window,
any FREE taxi would quickly change to the POB
state whenever it enters the region. Hence, xi = 0
for any i, which leads to p = 1.

Calculation of the FTT probability p requires both
x and y, and thus the system needs to extract the fol-
lowing information from the taxi data during the given
time window: Taxi ID, T1, T2 and final taxi status. Taxi
ID is the unique identifier of the taxi in the region; T1
is the first timestamp when the taxi is observed with
the FREE state inside the region; T2 is the first times-
tamp when the taxi is observed with the non-FREE
state (e.g., POB, ONCALL, etc.) inside the region, or
the first timestamp when the taxi is observed with the
FREE state outside the region (meaning the taxi leaves
the region already without getting a passenger).

Figure 4 shows the simplified flowchart of the above
described information extraction: when a new taxi
record is received, the system checks whether the taxi
is the first time appearing in the region. If so, the sys-
tem checks whether the taxi is FREE or not. If FREE,
the corresponding timestamp would be recorded as T1.
If the taxi changes to FREE from another state in-
side the region, the corresponding timestamp would
be recorded as T1 as well. After that, the system
keeps monitoring the taxi location and state until it
becomes non-FREE or leaves the region. Whenever
such events occur, the corresponding timestamp would
be record as T2. Finally, the system output would be
〈ID, T 1, T 2, POB〉 (taxi gets a passenger at T2), or
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Fig. 4. Simplified Flowchart of the Information Extraction.

〈ID, T 1, T 2, EXIT〉 (taxi leaves the region with FREE
at T2), or 〈ID, T 1, T 2, OTHER〉 (taxi turns into other
state at T2). Note that one taxi may generate multiple
output records, as it may enter the same region multiple
times. The built system is able to concurrently moni-
tor multiple regions and process data from more than
20,000 taxis, where the regional geographical informa-
tion is indexed in an in memory R-tree to speed up lo-
cating taxis (e.g., checking whether a taxi is currently
inside the region or not).

In short, the FTT probability is not simply based
on the discrete taxi pickup events, but a sequence of
taxi cruising behavior and taxi free time length in a
region. By aggregating such information from a large
number of taxis, we can statistically make a good
sense of the region’s taxi demand-supply situation. The
strong positive correlation between the FTT probabil-
ity and the average passenger wait time has been val-
idated, and more details can be found in our previous
study [32].

4.2. Taxi booking ratio (TBR)

We observe that when a significant number of taxis
are booked to pickup passengers in the same region, it
is very likely that the taxi demand is much higher than
supply there. Taxi booking usually means a passenger
uses the local taxi operator’s booking system to call a
taxi. When a taxi driver accepts that booking job, the
taxi state would change to ONCALL until the taxi suc-
cessfully gets the passenger at the pickup location. Af-

ter that, the taxi state would change to POB. Thus we
can use ONCALL → POB transition and its location
to count the taxi booking number at any given region.
Moreover, our local driver behavior study shows that
most of BUSY → POB transitions are caused by the
taxi booking as well, and thus we jointly utilize both
transition patterns to calculate the booking job num-
bers.

The absolute booking job number is hard to directly
serve as an effective feature for the learning algorithms
and models. We therefore further define the taxi book-
ing ratio (TBR) instead of booking number as fol-
lows:

N(ONCALL → POB) + N(BUSY → POB)

Total Number of Taxi Pickups
,

where N(·) is the count number of the given transi-
tion.

Note that the BUSY status means the taxi driver
temporarily unavailable. In practice, we found that this
status is always used by taxi drivers in the same way
as the ONCALL status, and thus we take the BUSY
status with the ONCALL status together to count taxi
booking number.

In short, TBR reflects the ratio of pickup number
caused by taxi booking to the total pickup number at
the given region and time period.

4.3. Recurrent neural network model

Based on the derived key features FTT probabil-
ity and TBR, we compare multiple models and fi-
nally select the recurrent neural network (RNN) [34]
to build the predictive model for passenger wait time.
The feedback between RNN’s hidden layers and input
layer allows its hidden neurons to remember the his-
tory of the previously processed information. There-
fore, it is suitable to process and build the model for
the successive FTT and TBR features extracted from
the temporally ordered taxi data. In recent years, the
RNN architecture together with the long short-term
memory (LSTM) [15] units has been widely used in
a variety of tasks to support sequential data, and the
GPU based computing architecture [31] significantly
reduces RNN’s training time.

In order to better identify the short term depen-
dencies, each input of RNN at time slot T , say
xT , considers three consecutive and latest FTT prob-
ability values and TBR values, denoted as xT =
{FT −2, FT −1, FT , RT −2, RT −1, RT }, where F and R
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Table 3

4-Element Vector of RNN Output

CLASS Passenger Wait Time Range 4-Element Output Vector

1 Shorter than 2 Minutes 〈0, 0, 0, 1〉
2 Between 2 and 5 Minutes 〈0, 0, 1, 0〉
3 Between 5 and 10 Minutes 〈0, 1, 0, 0〉
4 Longer than 10 Minutes 〈1, 0, 0, 0〉

Fig. 5. Simplified Architecture of the Built RNN Model.

represent FTT and TBR respectively. Given yT is the
average passenger wait time at time slot T , we thus
have an individual training data {xT , yT }, and the time
window can be shifted by one time slot at each RNN
time step. As mentioned earlier, we divide the passen-
ger wait time into four levels, and thus yT has four pos-
sible values, using a 4-element vector to represent, as
given in Table 3. Note that the given four-level clas-
sification and its corresponding wait time ranges are
mainly based on a local survey on taxi passengers in
Singapore, while other ways of classification on taxi
wait time can also be considered for other cities or for
different time periods in a day (e.g., peak hours and
off-peak hours).

The built RNN model consists of two hidden lay-
ers with 50 and 100 neurons respectively. Both of the
two hidden layers adopt LSTM units. For the out-
put layer, we use the softmax function as its activa-
tion. As the 4-element output vector, each element in
the vector falls in the range of (0, 1), and the max-
imum one will be the predicted class. For example,
the output 〈0.01, 0.07, 0.28, 0.64〉 means the the pre-
diction is class 1, i.e., passenger wait time shorter
than 2 mins, as 0.64 is the largest element. The mul-
ticlass version of the log-likelihood loss is used as the
loss function and RMSprop [33] is used as the opti-

mizer. Figure 5 shows the simplified architecture of
the built RNN model. Note that both features, namely
FTT probability and TBR, are the region-based vari-
ables, the built RNN model is a region-specific model
that can predict passenger wait time on any given re-
gion.

The passenger wait time data is collected by the
relevant government agency. In Singapore, land trans-
port authority (LTA) strives to collect and supply
such information to the public commuters and taxi
drivers. Currently, at more than 40 taxi stands and
main pickup locations, LTA is conducting the daily sur-
vey by manually recording the wait time of passen-
gers, and publishes the latest results on its official web-
site.1

5. Trip extraction module

Taxi trip is typically a sub-trajectory that starts with
a pickup event and ends with a dropoff event. This
module mainly extracts the trip information from the
raw taxi data, and the extracted trips would directly
help to study and visualize the citywide taxi operat-
ing patterns. Moreover, the trip start and end locations
can be used to further investigate taxi pickup, dropoff
hotspots, and other operation related issues.

5.1. Preliminary and terms

We firstly define the important terms and expres-
sions to be used in the following parts.

Definition 1 (Individual taxi’s trajectory z). A tem-
porally ordered sequence of the MDT records from
one taxi, i.e., p1 → · · · → pi → · · · → pn,
where pi (1 � i � n) is the ith record containing the
taxi state pi.state, instantaneous speed pi.speed, latitude
coordinate pi.lat, longitude coordinate pi.lon and times-
tamp pi.ts.

Definition 2 (Multiple taxis’ trajectory set Z). A col-
lection of the individual taxi’s trajectories, i.e., Z =
{zj |j = 1, 2, . . .}, where zj is the j th taxi’s individual
trajectory.

1http://www.lta.gov.sg/content/ltaweb/en/public-transport/taxis/
taxis-and-the-lta.html

http://www.lta.gov.sg/content/ltaweb/en/public-transport/taxis/taxis-and-the-lta.html
http://www.lta.gov.sg/content/ltaweb/en/public-transport/taxis/taxis-and-the-lta.html
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Algorithm 1 Taxi Trip Extraction Algorithm
Require: Taxi trajectory set Z, the thresholds ηduration,

ηsps and ηspu.
Ensure: Taxi trip set P .

1: k ← 1; Rk ← ∅;
2: for each individual taxi’s trajectory z in Z do
3: for i = 2 → n do
4: if pi−1.state = Non-POB and pi.state = POB

and Rk = ∅ then
5: Rk.Add(pi); Rk.Add(pi+1);
6: else if pi.state = POB and Rk �= ∅ then
7: Rk.Add(pi);
8: else if pi.state = Non-POB and Rk �= ∅ then
9: Rk.Add(pi); k ← k + 1; Rk ← ∅;

10: for each Rk �= ∅ do
11: if time duration of Rk < ηduration then
12: Remove Rk;
13: else if average speed of Rk < ηsps then
14: Remove Rk;
15: else if average speed of Rk > ηspu then
16: Remove Rk;
17: else
18: P.Add(Rk);
19: Output the extracted sub-trajectory set P ;

5.2. Taxi trip extraction

In order to extract taxi trip from the taxis’ trajectory
set Z, we propose a simple and practical algorithm,
called taxi trip extraction (TTE) algorithm, which is
shown in Algorithm 1.

The TTE algorithm in general consists of two steps:
firstly, given the taxi trajectory set Z, it identifies the
taxi sub-trajectories with the certain state transitions
and keeps them as the trip candidates: namely from
Non-POB state to POB state and return to Non-POB
again. Secondly, it filters out the trip candidates that
have too short duration or abnormal average speed,
as such sub-trajectories are normally caused by the
MDT internal error or taxi driver’s improper opera-
tions on taximeter or MDT. The algorithm’s final out-
put P is the extracted trip set, which consists of multi-
ple taxi sub-trajectories. Each sub-trajectory represents
one taxi trip, including the information from the pickup
event until the dropoff event.

6. Hotspot detection and visualization

6.1. Hotspot detection module

As mentioned earlier, hotspot can be either pickup
hotspot or dropoff hotspot. In this paper, we mainly

Algorithm 2 Pickup Hotspot Detection Algorithm
Require: Taxi trip set P and region �.
Ensure: Pickup hotspot set Qloc.

1: for each Rk in trip set P do
2: Extract the first POB location from Rk , say ck;
3: if ck outside the given region � then
4: Remove Rk;
5: else
6: Add ck into the location set H ;
7: Run DBSCAN clustering algorithm on set H ;
8: Add the centroid of the found clusters into Qloc;

present and study the taxi pickup hotspot, but simi-
lar methodology and algorithm can be applied to the
dropoff hotspot. Pickup hotspots are the frequent taxi
pickup locations, which are normally located at the
places with a high taxi demand, such as the main en-
trance of hotels, hospitals, and schools. The pickup
hotspots may dynamically change and vary tempo-
rally and spatially. Study and visualization of pickup
hotspots would directly help to understand the taxi de-
mand distribution and driver pickup behaviors. We thus
propose a specific algorithm, called pickup hotspot de-
tection (PHD) algorithm, to identify the hotspots. It is
mainly based on the extracted taxi trips, and the main
steps are given in Algorithm 2.

The PHD algorithm utilizes the extracted trip set P

as its main input, and outputs the pickup hotspot set
Qloc. Given all the trips in P and region �, the algo-
rithm firstly filters out the trips start outside �, and then
for the leftover trips, adds their first POB locations into
the location set H . After that, the algorithm runs the
density based clustering algorithm called DBSCAN on
set H , and computes the centroid of each found clus-
ters. All the computed centroids would be added into
the final output Qloc, namely the identified taxi pickup
hotspots. Note that hotspot detection normally requires
a relatively long period of taxi data, and thus the mod-
ule may use both the historical and buffered taxi data.

The PHD algorithm adopts the clustering algorithm
DBSCAN [13], which is an effective way to discover
high density clusters and meanwhile remove noises.
When running DBSCAN with the PHD algorithm, its
parameters need to be carefully selected. We will ad-
dress the parameter selection issue in the following
evaluation section. On the other hand, other advanced
density based clustering methods [35] can be consid-
ered and applied in the PHD algorithm as well. More-
over, the proposed hotspot detection is region-specific,
and different region � and different parameters for
clustering can be set in Algorithm 2.
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Fig. 6. User Interface of the Visualization Module.

6.2. 3D visualization module

To provide system users an intuitive and interactive
way to access and understand the analytics results, we
implement the 3D visualization module and its user in-
terface [22]. Given the spatial and temporal character-
istics of the analytics results, the visualization module
depicts the spatial information by superimposing it on
Singapore map, and the spatial information would dy-
namically change with the temporal information. Fig-
ure 6 shows a snapshot of the built 3D visualization.
The module also provides the scrubbable time line on
the upper side and the playback speed controller on
the bottom right corner. The system users can select
the starting time by simply clicking or dragging the
scrubbable time line, and the playback speed controller
allows for setting different speed as well as pausing
the streaming data, which is similar as a video player
control panel. The 3D map can be freely rotated and
zoomed in/out using either mouse or touch screen.

The visualization module is mainly implemented
by HTML5, and can support different browsers, in-
cluding Internet Explorer, Chrome and Firefox. The
WebGL [18] is used for rendering the interactive 3D
graphics and user interface.

7. System evaluation and visualization

7.1. Passenger wait time estimation

We trained the designed RNN model using a highly
modular neural networks library Keras [7], which was
written in Python and capable of running on top of
Theano [5]. After fine-tuning the parameters, 10%
dropout was used for the LSTM units and the batch

Fig. 7. Loss Function with Training Epoch.

size was set to 3. The RMSprop [33] was used as the
optimizer, where its learning rate and rho were set to
0.001 and 0.9 respectively. The training process was
conducted on the dedicated server with two NVIDIA
GPUs (Titan X 12 GB GDDR5). The region we choose
to build the model is the central business district (CBD)
of Singapore, which has the heaviest and highly dy-
namic traffic, and thus it is usually the hardest task to
estimate passenger wait time for that region.

Figure 7 showed the log-likelihood loss signifi-
cantly drops down on both datasets after multiple train-
ing epoches. The overall classification accuracy was
around 73.3%. We compared it with other two pop-
ular classification models: gradient boosting machine
(GBM) and random forest (RF). Table 4 summarized
the best accuracies the three models achieved on the
validation dataset: it showed that RNN achieved the
highest accuracy, which was probably because RNN’s
hidden layers successfully captured and linked the se-
quential features at the time domain. When building
different models for estimation of passenger wait time,
multiple features were introduced and used, while the
most effective features were the FTT probability and
TBR.

To verify the statistical significance of the above re-
sults, we adopt the two-tailed T-test [25] on the mul-
tiple runs of the ten-fold cross validation. The p-value
of the mean accuracy of RNN model and RF model
are 0.0000204, and the p-value of the mean accuracy
of RNN mode and GBM model are 0.0000153. Table 5
and Table 6 further give other information of the sig-
nificance test, including F statistic and the degree of
freedom. The above results verify the model accuracies
are significantly different, and thus the proposed RNN
model performs better than another two classic models
statistically.
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Table 4

Overall Classification Accuracy with Different Models

Training Model Overall Classification Accuracy

RNN 73.3%

Random Forest 67.5%

GBM 65.4%

Table 5

Statistics of Model Accuracy Comparison (RNN vs RF)

RNN RF

Variance 0.000691 0.000487

Degree of Freedom 9 9

F statistics 1.418192

F critical (alpha = 0.05) 3.178893

Table 6

Statistics of Model Accuracy Comparison (RNN vs GBM)

RNN GBM

Variance 0.000691 0.000411

Degree of Freedom 9 9

F statistics 1.680415991

F critical (alpha = 0.05) 3.178893

7.2. Trip extraction and pickup hotspot detection

We ran the TTE algorithm to extract the taxi trips,
where the thresholds ηduration, ηsps and ηspu were set to
60 seconds, 1 km/hour, and 150 km/hour. The daily ex-
tracted trip number varied in terms of working day and
weekend day, but the normal range was from 450,000
to 550,000. We used an independent taxi trip informa-
tion kept in taximeter to validate the TTE extraction re-
sults. The trip start and trip end time together with the
taxi ID were used to compare the trips, and it showed
that around 97% trips were successfully identified and
accurately matched.

We ran the PHD algorithm on the extracted trip data,
and successfully detected the taxi pickup hotspots dur-
ing the given time slots. The detected pickup hotspot
number varied at different time slots. For example,
Fig. 8 showed the detection result during an evening
peak hour, and nearly 200 hotspots were found across
the island, while Fig. 9 showed the detection result dur-
ing an early morning hour, and only around 20 hotspots
were found. To compare with the exiting studies, we
also perform the hotspot detection method used in [36],
which is mainly based on the OPTICS algorithm [2].
Only around 130 hotspots were successfully detected
across the island using this method, which occupies
around 65% of the hotspots detected by the proposed
method.

Fig. 8. Detected Pickup Hotspots during an Evening Peak.

Fig. 9. Detected Pickup Hotspots during an Early Morning.

For the PHD algorithm, running the DBSCAN clus-
tering algorithm on a large size location set was com-
putationally expensive due to its O(n2) complexity.
Moreover, properly choosing the two parameters of
DBSCAN, i.e., eps εd and min-points pd , was not a
trivial issue: εd specified the maximum radius of the
neighborhood and pd sets the minimum number of
points in an eps-neighborhood of the point. An unduly
small εd or an overly large pd might lead a large num-
ber of the data points cannot be clustered, while an
overly large εd or an unduly small pd would merge dif-
ferent clusters into one. Figure 10 showed the number
of the detected hotspot with respect to different εd and
pd . We saw that small εd or large pd values result that
only a few number of hotspots were detected and many
actual ones were neglected. On the other hand, large
εd values or small pd values would easily merge ad-
jacent hotspots and meanwhile bring the insignificant
hotspots. By carefully study such parameters, we usu-
ally set εd to 15 meters. For the parameter pd , differ-
ent values were used for different time durations: for
example, we set pd to 10 points when processing 15
mins buffered time period, while we set pd to 50 points
when processing the daily taxi data. In short, the DB-
SCAN parameters needed to be carefully selected and
tuned.
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Fig. 10. DBSCAN Performance with Different Parameters.

In short, the three analytics modules were mainly
implemented in JAVA and Python, and can be in-
voked manually from the user interface or automat-
ically based on the system configuration file. The
JETTY server [12], which supplied a java servlet con-
tainer and a HTTP server, was selected to host them.
The taxi data and the analytics results were stored in
two separated databases.

7.3. Visualization

We showcased some snapshots of the built visual-
ization module, especially the outputs from the three
analytics modules, namely wait time estimation, trip
extraction and hotspot detection.

Figure 11 showed the estimated passenger wait time
at the lunch time (around 12:30PM) in a working day.
We saw that the four colors, representing the four wait
time ranges, depict the different predefined regions.
The three regions on the Singapore west (the left side
of the map) were all in red (more than 10 mins), which
was probably due to the low taxi supply in those remote
areas. Many regions were in green (less than 2 mins) or
light green (between 2 and 5 mins) colors, showing a
better balance between taxi supply and demand there.

Figure 12 showed the estimated passenger wait time
in the evening (around 10PM) in the same working day.
We saw that the downtown area (bottom of the map)
were in either red or orange (between 5 to 10 mins) col-
ors, which was probably due to the high taxi demand
in that area. Meanwhile, most of other regions were in
green probably due to low taxi demand at night.

On the built 3D map, each region was selectable and
can be highlighted to dynamically show the variance of
passenger wait time. Moreover, the visualization mod-

Fig. 11. Predicted Passenger Wait Time at Noon.

Fig. 12. Predicted Passenger Wait Time at Night.

ule allowed the system users adjust each region and
change its update frequency.

Figure 13 showed the extracted trips at the Sin-
gapore Changi airport region between 2:00AM and
2:15AM, where the green lines represented the out-
going trips and the pink lines represent the incoming
trips. We saw that most lines were in green and a few in
pink, showing only a few number of taxis taking pas-
sengers to the airport during that time period.

Figure 14 showed the extracted trips at the down-
town region between 7:15PM and 7:30PM, where the
total trip number was apparently larger than Fig. 13 and
most lines were still in green. It was probably caused
by people back home from their office during that pe-
riod.

On the built 3D map, the users can freely select any
region to observe and highlight its incoming/outgoing
trips based on the trip extraction results.

Figure 15 showed the detected pickup hotspots dur-
ing an evening peak (from 7PM to 7:30PM). We saw
that the downtown area (bottom of the map) gathers
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Fig. 13. Incoming and Outgoing Trips at Changi Airport Region.

Fig. 14. Incoming and Outgoing Trips at Downtown Region.

Fig. 15. Detected Hotspots with the Cluster Density.

a significant number of the detected hotspots. Mean-
while, several hotspots, located at the center of the map
and Changi airport, were in red color, which means the
pickup frequencies there were pretty high.

8. Conclusion

In this paper, we presented a system for taxi service
analytics and visualization. It contained the three an-
alytics modules and a 3D visualization module. The
RNN based model was proposed and implemented to
estimate the regional passenger wait time, which uti-
lizes several derived key features, including FTT prob-
ability and taxi booking ratio. The built model showed
a better accuracy than other popular learning models.
Moreover, we designed the novel and practical algo-
rithms to successfully detect hotspots and extract taxi
trips. We further designed the frontend 3D visualiza-
tion and interactive user interface for the three analyt-
ics modules. The 3D visualizations provided system
users an effective way to access and understand the taxi
operation patterns from the analytics results. The ex-
perimental results show that the built RNN-based pre-
dictive model achieves 73.3% overall accuracy, which
is significantly higher than other classic models. Mean-
while, around 97% trips are accurately identified and
more than 200 hotspots in the city are successfully de-
tected.

To the best of our knowledge, it is the first work ap-
plying the RNN-based model to conduct the taxi pas-
senger wait time estimation. Meanwhile, a novel 3D
visualization solution with an informative user inter-
face is designed to effectively help users to access the
key taxi analytics results, including trips and hotspots.
While the current system archives our design objec-
tives, how to predict the passenger wait time in a better
accuracy is still an open and interesting research prob-
lem. For example, in addition to the data from the taxi
side, new information can be introduced to derive new
features for the prediction model, such as the weather
information and the crowd-sourced passenger mobil-
ity information. Moreover, we are planning to period-
ically publish the estimated passenger wait time and
hotspots online to help the public and other stakehold-
ers in Singapore, including taxi companies and govern-
ment agencies.
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