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Abstract—Knowledge tracing serves as the key technique in
the computer supported education environment (e.g., intelligent
tutoring systems) to model student’s knowledge states. While the
Bayesian knowledge tracing and deep knowledge tracing models
have been developed, the sparseness of student’s exercise data
still limits knowledge tracing’s performance and applications.
In order to address this issue, we advocate for and propose
to incorporate the knowledge structure information, especially
the prerequisite relations between pedagogical concepts, into
the knowledge tracing model. Specifically, by considering how
students master pedagogical concepts and their prerequisites,
we model prerequisite concept pairs as ordering pairs. With a
proper mathematical formulation, this property can be utilized as
constraints in designing knowledge tracing model. As a result, the
obtained model can have a better performance on student concept
mastery prediction. In order to evaluate this model, we test it on
five different real world datasets, and the experimental results
show that the proposed model achieves a significant performance
improvement by comparing with three knowledge tracing models.

Index Terms—Knowledge Tracing, Prerequisite Modeling,
Deep Learning

I. INTRODUCTION

Knowledge tracing aims to model the knowledge states of

individual students through quantitatively diagnosing a stu-

dent’s mastery level on each concept [9]. Traditionally, knowl-

edge tracing is one of the key components and techniques to

enable both personalized learning and teaching, where students

can choose what they need to practice more and teachers

can decide which concepts to teach more to students [2],

[3], [30]. The rapid developed computer supported education

environment and online education platforms provide abundant

students’ exercise data for knowledge tracing. Yet, it also

comes with a major challenge, which is the sparseness of stu-

dent’s behaviors. Specifically, students tend to use the system

in an irregular time basis, and spend less time to practice for a

comprehensive assessment of their concept mastery. Thus for

each student, it is very likely that only a small set of concepts

in each subject are practiced (by solving quiz problems)

or learned (by browsing tutorial videos or interacting with

teachers). The mastery levels of a large portion of concepts

remain unknown, which makes the knowledge tracing suffer

from accuracy issue and be restricted for further applications

(e.g., student performance prediction [15], question difficulty

prediction [14], curricula optimization [22]).

Our insight of solving the sparseness problem hinges upon

the idea of fully exploring the interdependencies between

concepts from the knowledge structure, especially the prereq-

uisites between pedagogical concepts. The concepts usually

do not exist alone: some concepts serve as the prerequisites

of other concepts, thus if we know a student has mastered a

target concept, then we are sure that she has also mastered its

prerequisite concepts. Modeling prerequisites for knowledge

tracing is greatly under-explored. Most existing work that

studies prerequisites is mainly about mining prerequisites,

rather than modeling them to assist knowledge tracing [16],

[17], [20], [29]. Some other work tries to use prerequisites for

concept map extraction [27], but it still does not consider how

to use prerequisites for knowledge tracing. There is limited

attempt to use prerequisites for student modeling [5], [7], but

they do not specifically use deep learning for the knowledge

tracing purpose.

In this paper, we propose a novel way to model prerequisites

for knowledge tracing. In a nutshell, our intuition is that

prerequisites actually represent concept learning dependencies,

which naturally serves as constraints on the student concept

mastery prediction. Let us consider an example. Suppose there

are two concepts k1 and k2, and k1 is the prerequisite of k2.

In general, it means that if a student has mastered k2, then

most likely she also masters k1; besides, if the student does

not master k1, then she unlikely masters k2 [4]. By utilizing

this property, we propose a knowledge tracing model with pre-

requisites as constraints, which actually creates links between

questions. As a result, the exercise data sparseness issue can

be relieved and we can now achieve a better performance on

estimating each student’s mastery on the concepts.

However, even though modeling prerequisites as constraints

for knowledge tracing model is promising for data sparseness

issue, there still remains a main challenge on how to model

prerequisites as constraints. There are many different ways to

model constraints, but how to express and formulate prerequi-

sites into a proper mathematical form is not straightforward.

For example, one can model the constraints as logic [1],

[23], or boolean functions [6], [11] in regularization, or a

conditional probability [32] to maximize in the objective

function. Each such way of constraint modeling, as we shall

see later in detailed mathematical forms, is not trivial to

formulate prerequisite relations between pedagogical concepts

in a deep knowledge tracing setting.
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To address this challenge, by analyzing the characteristics

of prerequisites, we propose to model each prerequisite as

an ordering pair between a student’s mastery levels on two

concepts. That is, suppose concept k1 is the prerequisite of

concept k2; then we enforce the probability of a student

mastering k1 as always larger than that of her mastering k2 at

any time later. As we shall see later in derivation details, such

an ordering pair has a nice mathematical formulation, which is

easily explainable and computationally tractable. Finally, we

put forward an order pair regularized deep knowledge tracing

framework to incorporate the prerequisite constraints, which

will have a better performance on students’ knowledge states

estimation.

We can summarize our contributions in this work as follows:

• We study an important problem of how to incorporate

prerequisites for assisting deep knowledge tracing, which

essentially introduces the subject concepts and their struc-

ture information into the knowledge tracing domain;

• We explore a novel approach to model the prerequisites

as constraints through a new knowledge tracing model;

• We evaluate our model on real-world datasets and the

results show that our model improves the state-of-the-art

baselines.

The rest of this paper is organized as follows: Section II

reviews the existing work and how our model is different

from those work. Section III gives a clear description on the

problem definition and Section IV illustrates how the exercise

sequence data can be modeled. Details of the proposed model

are presented in Section V. Section VI presents experimental

results on five real world datasets and the whole paper is

concluded in Section VII.

II. RELATED WORK

Researchers have explored different methods to do knowl-

edge tracing. Earlier work focuses on Bayesian knowledge

tracing models which define each student’s knowledge state

as a binary variable and utilize probabilistic models like

Hidden Markov Model to estimate students’ concept mas-

tery [9]. Subsequently, researchers improve the model with

considering cognitive factors like slipping and guessing [2].

Prior knowledge of individual students [30] and difficulty

levels of questions [21] are also explored to improve those

Bayesian knowledge tracing models. In order to handle the

partially correct responses on subjective problems, a fuzzy

cognitive diagnosis framework is proposed [28]. Recently, with

the development of deep learning, deep knowledge tracing

model is proposed to model the students’ exercise sequences

[22], and dynamic key-value memory network based model is

also proposed to better represent question semantics [31]. In

addition, with the advances of recommender system, matrix

factorization based method was also proposed to model the

students’ exercise data [26]. Compared with the these knowl-

edge tracing models, we are special in both using deep learning

(especially prerequisite-driven recurrent neural networks) for

knowledge tracing, and also exploring prerequisites in the deep

knowledge tracing setting.

Utilizing prerequisite information to solve the knowledge

tracing problem is still limited in previous work. With model-

ing the knowledge tracing problem as a Bayesian network, [5]

tries to introduce the prerequisites as a new layer in the

Bayesian network. In addition, one recent work tries to extend

the idea of Bayesian network modeling of prerequisites to

jointly discover the prerequisite graph and estimate the student

concept mastery [7]. Compared with these two methods, we

consider knowledge tracing in a deep learning setting, and we

systematically explore prerequisites.

Another closely related research is constraint learning,

which has been a popular approach for incorporating domain

knowledge in prediction. For example, Markov Logic Network

(MLN) [23] models constraints in the form of first-order logic.

Comparatively, our modeling the student concept mastery in

an ordering pair form is more flexible than logic to formulate

the prerequisites. There are also non-logic forms of modeling

constraints, e.g., Constraint-Driven Learning [6], Generalized

Expectation [18], Posterior Regularization [11], and Robust

RegBayes [19], but all these methods do not consider how

to use constraints in deep learning models. In addition, some

recent attempts try to use logic rules in knowledge graph em-

bedding [12], deep neural networks [13], and text embedding

for relation extraction [24]. However, they are designed for

different applications other than deep knowledge tracing, and

they have to model the constraints in a logic form.

III. PROBLEM FORMULATION

Knowledge tracing aims to estimate students’ knowledge

states based on students’ exercise data. As questions of

exercise also link to different subject concepts, knowledge

tracing models also consider concept information. Hence,

the knowledge tracing problem concerns three main entities:

student, question and concept. In this work, we denote a set

of students as U , a set of questions of exercise as Q, and a set

of concepts as C. We further denote a result of student i ∈ U
answering question j ∈ Q as yi,j ∈ {0, 1}, where yi,j = 1
indicates a correct answer and yi,j = 0 indicates an incorrect

answer. In addition, we use following definitions to denote

some important terms.

Definition 1: An exercise sequence si for student ui is a

sequence of question-result pairs si = {(π(i, t), yi,π(i,t),t)|t =
1, ..., ni}, where π(i, t) : U × T → Q returns the question

that student i answers at time t ∈ T , and ni > 0 is the

sequence length. This kind of data can be easily obtained

through intelligent tutoring systems or online education plat-

forms. This exercise sequence data is usually represented as

a student-question matrix, and a toy example is shown by the

“Student-Question Matrix” in Figure 1. In this matrix, 1 and

0 denote students answering questions correctly and wrongly

respectively. It is not compulsory for all the students to answer

all the questions, so some students may not answer certain

questions, which is denoted by “-” in the matrix. This is also

one of the reasons for the data sparseness issue discussed in

the Introduction section.
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Fig. 1: Illustration of knowledge tracing problem.

Definition 2: A question-concept matrix O ∈ {0, 1}|Q|×|C|
is a binary matrix, where Oj,k = 1 if question j ∈ Q contains

concept k ∈ C, and Oj,k = 0 otherwise. Obtaining this data is

not trivial and there are two main approaches to do it: either

automatically recognized by computer systems or manually

labeled by experts. There is research work utilizing machine

learning algorithms to identifying concepts contained in each

question [31]. In this work, since the focus is knowledge

tracing rather than identifying concept in questions, we utilize

the manual approach to obtain this matrix data. A small

example of the matrix is shown with the “Question-Concept

Mapping” matrix in Figure 1. For the purpose of better

visualization, this example drops all 0s and replace all 1s with

the “�” mark.

Definition 3: A prerequisite matrix E ∈ {0, 1}|C|×|C| is

a binary matrix, where Ek1,k2 = 1 if concept k1 ∈ C
is the prerequisite of concept k2 ∈ C, and Ek1,k2 = 0
otherwise. Similar to the question-concept matrix, Identifying

the prerequisite relations between pedagogical concepts can

either be done automatically through algorithm like [27], or be

manually labeled by experts. In this work, a manually labeled

prerequisite matrix is utilized in model testing. Prerequisites

are links between concepts, so this matrix naturally creates a

graph of concepts. A small prerequisite graph is shown by the

“Prerequisite Relations” diagram in Figure 1, in which five

different prerequisite between five mathematical concepts are

presented.

With the above definition, the problem input of knowledge

tracing can be summarized as: 1) a student-question matrix,

which includes a set of questions Q, a set of students U ,

and each student i ∈ U has an exercise sequence si; 2) a

question-concept matrix O; 3) a concept prerequisite matrix

E. In addition, for the problem output, we aim to learn: a

vector hi,t ∈ R
d indicating student i’s knowledge states at

time t. Based on the output, we expect to easily compute a

student’s level of mastering a concept.

Hence, the whole problem can be illustrated by Figure 1.

It takes the three data matrices as input, utilizes a knowledge

tracing model (e.g. deep learning network model) to process

those data, and generates the knowledge states for different

students. For easier checking, a list of notations used in this

work is summarized in Table I.

IV. MODELING EXERCISE SEQUENCE

We model each exercise sequence si with a Gated Recurrent

Unit (GRU) [8]. The model input is an exercise sequence

which is a sequence of question in one-hot vector. For the

t-th question in si, we denote its one-hot representation as

xi,t, which is a |Q|-dimensional vector with only the π(i, t)-
th dimension as one and the other dimension as zeros. The

model output is a sequence of student’s hidden knowledge

states. We denote student i’s hidden knowledge states at time

t as hi,t ∈ R
d. To map the input of xi,t’s to the output of

hi,t’s, we are inspired by [25] to take the question answering

results into consideration. That is, we try to differentiate the

question contribution to its corresponding knowledge hidden

states, based on whether the question was answered correctly
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TABLE I: A list of notations used in this work.

Var. Description
U a set of students shown in the data
Q a set of questions appeared in the data
C a set of concepts included by all the questions
si an exercise sequence of student i

π(i, t) the question student i answered at time t
yi,j,t binary value of whether student i solves question j at time t
Oj,k binary value of whether question j has concept k
Ek1,k2 binary value of whether k1 is prerequisite of k2
hi,t a d-dimensional vector as student i’s embedding at time t
xj a one-hot representation of question j
ck a d-dimensional vector as concept k’s embedding
ŷij a [0,1] value of how well student i solves question j

mi,k,t binary value of whether student i masters concept k at time t

or not. Denote ⊕ as a vector concatenation operator and 0 as

a |Q|-dimensional zero vector. Then, we introduce x̃i,t as

x̃i,t =

{
xi,t ⊕ 0, if yi,π(i,t) = 1;

0⊕ xi,t, otherwise.
(1)

Then, we use x̃i,t’s as the new input to GRU for estimating

the student knowledge hidden states hi,t’s.

• Reset gate: at time t of si, the reset gate is defined as

ri,t = σ(Wrx̃i,t + Urhi,t−1 + br) (2)

where σ(·) is a sigmoid function; Wr ∈ R
d×d, Ur ∈ R

d×d and

br ∈ R
d are parameters. Besides, hi,0’s are also parameters,

indicating each student i’s initial knowledge states.

• Update gate: at time t of si, the update gate is defined as

zi,t = σ(Wzx̃i,t + Uzhi,t−1 + bz) (3)

where Wz ∈ R
d×d, Uz ∈ R

d×d and bz ∈ R
d are parameters.

• Temporary hidden state: at time t of si, it is defined as

h̃i,t = tanh(Whx̃i,t + Uh[ri,t � hi,t−1] + bh) (4)

where Wh ∈ R
d×d, Uh ∈ R

d×d and bh ∈ R
d are parameters;

� is an element-wise multiplication.

• Output hidden state: at time t of si, it is defined as

hi,t = (1− zi,t)� hi,t−1 + zi,t � h̃i,t. (5)

The set of parameters in GRU can be denoted as ΘGRU =
{Wr, Ur,br,Wz, Uz,bz,Wh, Uh,bh}. With this set of pa-

rameters, the GRU model can estimate one student’s knowl-

edge state according to her exercise sequence data.

Besides modeling students’ exercise sequences, another

important part is how to compute the level of mastery on

a specific concept for a student according to her hidden

knowledge states, which is described next.

Concept Mastery. We first define the probability that student

i masters concept k at time t as

P (mi,k,t = 1|si,ΘGRU , ck) = σ(hT
i,t−1ck + bm), (6)

where hi,t−1 denotes student’s knowledge states at time t−1,

ck denotes concept k’s embedding, and bm denotes the bias.

In general, student i knows how to solve question j if she

masters all the concepts in j. That is, student i must master

every concept k with Oj,k = 1. Thus, we derive the probability

that student i knows how to solve question j as

Δi,j,t =
∏

k:Oj,k=1 P (mi,k,t = 1|si,ΘGRU , ck). (7)

Denote Θ = {ck|k ∈ C} ∪ ΘGRU as the overall set of

parameters. Then, we can derive the probability of observing

a correct answer from student i to a question j as

P (yi,j,t = 1|si,Θ) = Δi,j,t. (8)

V. MODELING PREREQUISITES AS CONSTRAINTS

Given a concept k1 is another concept k2’s prerequisite,

we can define two requirements on one student’s mastery of

concepts as following:

R1: if student i has mastered k2 at time t2, then we can easily

see she also masters k1 thereafter. We can formalize this

requirement as (mi,k2,t2 = 1) ⇒ (mi,k1,t1 = 1), where

t1 ≥ t2 and “⇒” is an operator of implication similarly

in first-order logic.

R2: if student i does not master k1 at time t1, then most

likely she does not master k2 either. We can formalize

this requirement as (mi,k1,t1 = 0) ⇒ (mi,k2,t2 = 0),
where t2 ≥ t1.

Our intuition is to model prerequisite relations as constraint

based on R1 and R2, but it is actually not a trivial task. There

are several existing choices to model prerequisite relations as

constraints, but none of them seems feasible.

• Modeled as logic. Both MLN [23] and PSL [1] require

formulating the whole problem as logic reasoning, which

is not easy for the task of knowledge tracing with

complex student learning behaviors and psychological

factors.

• Modeled as boolean functions. Both CODL [6] and PR

[11] can be adapted to model a prerequisite constraint

as a boolean function indicating whether R1 and R2

are satisfied. For example, given a threshold ε, we let

mi,k,t = 1 if P (mi,k,t = 1) ≥ ε. Based on the

values of mi,k1,t1 and mi,k2,t2 , the boolean function

returns one if R1 and R2 are satisfied, or zero otherwise.

The challenging part here is to choose the threshold ε;
moreover, it is not clear whether one single threshold ε
works for all different mi,k,t’s.

• Modeled as conditional probability. CPR [32] can be

adapted to model a prerequisite as a conditional prob-

ability to maximize. For example, we can formulate

R1 as P ((mi,k2,t2 = 1) ⇒ (mi,k1,t1 = 1)) =
P (mi,k1,t1

=1,mi,k2,t2
=1)

P (mi,k2,t2
=1) . In Eq. 6, we have defined

P (mi,k2,t2 = 1). But it is not trivial to define

P (mi,k1,t1 = 1,mi,k2,t2 = 1), such that: 1) it depends

on {hi,t, ck1 , ck2}; 2) it meets a probability definition
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(e.g., smaller than P (mi,k2,t′ = 1), sum as one, and so

on). Similar challenge also exists in formulating R2 as a

conditional probability.

Modeling Prerequisite as an Ordering Pair. With above

analysis, we propose to consider a soft version of R1 and R2.

R̃1. If P (mi,k2,t2 = 1) is large, then P (mi,k1,t1 = 1) is larger

for t1 ≥ t2, when both yi,π(i,t1)t1 and yi,π(i,t2),t2 are 1.

R̃2. If P (mi,k1,t1 = 1) is small (i.e., P (mi,k1,t1 = 0) is

large), then P (mi,k2,t2 = 1) is smaller for t2 ≥ t1, when

both yi,π(i,t1),t1 and yi,π(i,t2),t2 are 0.

We propose an ordering pair to formulate R̃1 and R̃2 together

as:

P (mi,k2,t2 = 1) ≤ P (mi,k1,t1 = 1), (9)

∀yi,π(i,t1),t1 = yi,π(i,t2),t2

Let us analyze the advantages of the above ordering pair

formulation: 1) Mathematically, this ordering pair can satisfy

both R̃1 and R̃2 at the same time. If P (mi,k2,t2 = 1) is

large, then according to Eq. 9, P (mi,k1,t1 = 1) is even

larger. If P (mi,k1,t1 = 1) is small, then according to Eq.

9, P (mi,k2,t2 = 1) is even smaller. 2) Semantically, this

ordering pair naturally encodes the fact that more advanced

an concept is, more difficult it is to learn. That is, since k2
(e.g., addition within 1000) is a more advanced concept than

k1 (e.g., addition within 10), the chance a student can master

k2 is lower than that she can master k1. But if the student does

master k2, she must have mastered k1. 3) Computationally,

this ordering pair makes prerequisite modeling tractable for

optimization. The constraints of R1 and R2 are hard to

optimize due to the discrete assignments of mi,k,t’s. Recall

that, each P (mi,k,t = 1) is parameterized with hi,t, ck and

bm according to Eq. 6. Therefore, to enforce the ordering

pair in Eq. 9, we can either use it as a hard constraint or a

regularization term for maximizing P (yi,j,t = 1) in Eq. 8. In

either way, we solve a continuous optimization problem w.r.t.

hi,t, ck and bm, which is much easier than directly optimizing

with R1 and R2.

Based on this ordering pair formulation, we propose our

new model named Prerequisite-driven Deep Knowledge
Tracing with Constraint modeling (PDKT-C), as illustrated

by Figure 2. Its objective function can be defined as

max
Θ

log
∏
i

∏
t

P (yi,π(i,t),t|si,Θ) (10)

s.t., P (mi,k2,t2 = 1) ≤ P (mi,k1,t1 = 1),

∀(k1, k2) ∈ E & yi,π(i,t1),t1 = yi,π(i,t2),t2

Note that P (yi,π(i,t),t = 0) = 1 − P (yi,π(i,t),t = 1), and we

shall maximize the probability P (yi,π(i,t),t) according to the

value of yi,π(i,t),t. We relax the above hard constraint as soft

Fig. 2: Illustration of PDKT-C model.

regularization, and also introduce logarithm operator to ensure

the scale consistency with the loss term:

max
Θ

∑
i

∑
t

logP (yi,π(i,t),t|si,Θ)+ (11)

λ
∑
i

∑
k1,k2

∑
t1

∑
t2

δ(∗) [logP (mi,k1,t1)− logP (mi,k2,t2)] ,

where k1, k2 are concept pairs having Ek1,k2 = 1; δ(∗) =
δ(yi,π(i,t1),t1 = yi,π(i,t2),t2), and δ(∗) = 1 if yi,π(i,t1),t1 has

same value with yi,π(i,t2),t2 , δ(∗) = 0 otherwise; λ > 0 is

a trade-off parameter. During model training and parameter

learning, we use stochastic gradient descent to optimize Θ.

Discussions. One prerequisite may be stronger than another

prerequisite. How shall we enforce such an intensity difference

in our model design? Recall that in Eq. 10, we use a trade-off

parameter λ to regularize the ordering pair constraint in Eq. 9.

The larger λ is, the stronger the ordering pair constraint is,

because P (mik1
= 1) has to be even larger than P (mik2

= 1).
In other words, if student i does not master concept k1 (i.e.,
P (mik1

= 1) is small), then she is unlikely to master concept

k2 (i.e., P (mik2 = 1) should be much smaller). Therefore, this

λ value effectively encodes the prerequisite intensity. Ideally

we want to assign different λ values for different prerequisites.

There are several straightforward approaches for this λ value

assignment: 1) provided by domain experts, which is labor

intensive; 2) fined tuned according to the model evaluation

w.r.t. Eq. 10, which is computationally expensive for such a

combinatorial search. A possible idea is to take a data-driven

approach. For example, we may use the association rule min-

ing to identify confidence and support for each prerequisite,

and use these scores as the priors to guide the learning of λ’s

for different prerequisites.

To accurately estimate a student’s knowledge states, most

knowledge tracing problems essentially make an implicit as-

sumption that the sequence of exercises made by a learner

usually occurs in a short period. Accordingly, the student’s

knowledge states would not be influenced by other factors

during the interval of exercises.
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TABLE II: Data Statistics

Statistics ASSIST AICFE-CM AICFE-GE AICFE-MA AICFE-PH
# of records 88,123 125,726 44,662 66,568 67,874
# of students 1610 2648 1451 2445 964

Average records/student 54.7 47.5 30.8 27.2 70.4
# of questions 683 655 815 617 483

Question coverage/student 8% 7% 4% 4% 15%
# of concepts 45 21 23 25 19
# of relations 50 27 38 27 13

Fig. 3: Results compared to baselines.

(a) PDKT-C: # of Hidden Units. (b) PDKT-C: λ.

Fig. 4: Impact of Parameters.

VI. EXPERIMENTS

In this section, we first introduce the datasets and experi-

mental settings. Then we evaluate our models by comparing

with other baseline models. Subsequently, we conduct exper-

iments to elaborate how important parameters affect the final

performance.

A. Experimental Setup

Datasets. In this paper, we conduct our experiments with

five real world datasets: ASSIST, AICFE-CM, AICFE-GE,

AICFE-MA, AICFE-PH. ASSIST represents the public dataset

ASSISTment 2009-2010 1 “Non-skill builder” [10], which has

been widely used by a lot of knowledge tracing work. In

this work, we use the “Non-skill builder” dataset as it can

1https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-
data

better represent students’ normal exercise sequences. Certain

operations are applied to preprocess this dataset. Firstly, we

use sequences generated with “random order” rather than the

“linear order” because “random order” sequences are more

natural and can avoid possible bias caused by order. Sec-

ondly, only sequences longer than 30 are used to avoid short

sequences. Thirdly, questions of each sequences are further

filtered by a set of concepts which is a subset selected by two

experts from the whole set of concepts in ASSISTment data.

These two experts manually define the prerequisite relations

between the chosen concepts with the Kappa value as 0.83.

Detailed data statistics of ASSIST are shown in Table II.

All the other four AICFE-* datasets represent the data

collected from our online educational platform - Smart Learner

Platform (SLP), which is developed by Advanced Innovation

Center for Future Education (AICFE) at Beijing Normal

University. This platform serves more than 4000 students from
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31 local schools in Beijing. More specifically, AICFE-CM,

AICFE-GE, AICFE-MA and AICFE-PH are four datasets for

chemistry, geography, mathematics and physics respectively,

and they are all online available for the research purpose2.

All the questions on SLP are carefully labeled with the corre-

sponding concepts by experienced teachers in corresponding

subject. The data collection process lasts around two years

since 2016. However SLP does not provides the prerequisite

relation data, which is done manually by experts. For each

subject, we find two experts to label the prerequisite relations

between concepts. The Kappa values are 0.85, 0.90, 0.93, 0.87

for chemistry, geography, mathematics, physics respectively.

The detailed data statistics of these datasets are shown in

Table II.

In Table II, the “Average records/student” row shows the

average number of question each student answers, which is

between 27 and 71 for all the five dataset. Another row “Ques-

tion coverage/student” describes the average percentage of

questions each student answers, which is defined as “Average

records/students” divides “# of questions”. As shown in the

table, this values varies from 4% to 14%. This low coverage

percentage reflects the data sparseness issue on knowledge

tracing.

Setting. In each experiment, we randomly select X% of

sequences from the entire dataset as training data. We then

randomly select 10% of sequences from the rest data as

validation data. The remaining (100-10-X)% of sequences is

used as testing data. Each experiment is repeated 10 times to

calculate the average performance.

We evaluate PDKT-C from both classification and regres-

sion perspectives. On one hand, with considering it as a clas-

sification problem, exercise result is defined as a binary value,

in which 0 represents incorrect answer as negative sample

and 1 represents correct answer as positive sample. Hence,

we use two popular classification metrics: Area Under ROC

Curve (AUC) and Predication Accuracy (ACC) to measure our

model performance. On the other hand, with considering it as a

regression problem, questions result is defined as a continuous

value between 0 and 1. Hence, we use two popular regression

metrics: Mean Absolute Error (MAE) and Root Mean Square

Error (RMSE) to evaluate our model performance.

For our model PDKT-C, the number of hidden units is set

to 32 for GRU network. In addition, for PDKT-C, the λ is set

as 0.01. Furthermore, for the Adam algorithm utilized during

model training, the initial learning rate and iteration number

are set to 0.01 and 500 respectively with parameters β1 = 0.9,

β2 = 0.999 and ε = 1 × 10−8. All models are implemented

with Tensorflow using Python on a Linux server that equips

with 128GB RAM, two Intel Xeon Processor E5-2683 v3

CPUs and one GeForce GTX TITAN X GPU.

Baselines. To demonstrate the effectiveness of PDKT-C, we

compare with other models solving knowledge tracing prob-

lem. More specifically, three models are selected as baselines:

2http://www.bnu-ai.cn/download-unit

Bayesian Knowledge Tracing (BKT) [2], Probabilistic Ma-

trix Factorization (PMF) [26] and Deep Knowledge Tracing

(DKT) [22].

BKT: BKT utilizes a binary variable to indicate students’

mastery of a concept. Based on the exercise sequences on a

specific concept, BKT uses HMM to update the probabilities

of this binary variable. BKT model inherently assumes that

mastered knowledge will not be forgotten, but factors such as

guessing and slipping are considered [2]. BKT is a classic

knowledge tracing model and used by a lot of knowledge

tracing work, so it is chosen as a baseline for our model

evaluation.

PMF: PMF is originally designed for recommender system,

but is adopted to estimate students’ knowledge states recently

[26]. PMF transforms the question answering problem into

a similarity comparison problem, namely how well a student

can answer a specific question depends on how similar her

knowledge states and the question are. For this purpose, PMF

projects both students’ knowledge states and questions into

vectors of the same space, and then calculate the similarities

accordingly. Our PDKT-C has similar computation, so we also

select PMF as one of our baseline models.

DKT: DKT applies the recurrent neural network model on

exercise sequences to estimate students’ mastery of concepts.

These exercise sequences are a mixture of questions linking to

different concepts, so DKT can estimate students’ knowledge

states of multiple concepts simultaneously. More specifically,

DKT takes the one-hot vector of each question’s concept as

input, and outputs a vector between 0 and 1 that represents

students’ mastery level on all concepts [22]. DKT has become

an important knowledge tracing model, so we also select it as

a main baseline model. In this word, to be consistent with our

model, we develop the DKT model with GRU network instead

of the LSTM network.

B. Model Evaluation

Comparison with Baselines. we first compare the overall

performance of PDKT-C with baseline models. In this exper-

iment, for each dataset, 70% of the data is randomly selected

as training data, 10% is randomly selected as validation data,

and the remaining 20% is used as testing data. Results of the

five datasets on the four performance metrics are presented in

Figure 3.

From Figure 3, we can have two main observations. Firstly,

compared to baseline models, we can see PDKT-C obtains

higher AUC and ACC values and lower MAE and RMSE

values, which means a better performance. More specifically,

compared to DKT, PDKT-C obtains 10% improvement on

average. This proves that prerequisite relations do provide

additional useful information for estimating students’ knowl-

edge states. Secondly, compared to PMF and BKT, PDKT-

C and DKT obtain more consistent performances on all five

datasets, which implies that deep learning based models are

more robust.
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(a) ASSIST

(b) AICFE-CM

(c) AICFE-GE

(d) AICFE-MA

(e) AICFE-PH

Fig. 5: Impact of training data size.
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(a) AUC (b) ACC

(c) MAE (d) RMSE

Fig. 6: Impact of prerequisite number.

C. Impact of Parameters

Impact of trade-off parameters. For PDKT-C, there are two

important parameters affecting the final performance. One is

the # of hidden units of GRU network, and the other is the λ
in Eq. 11. In this subsection, we examine how different values

of these two parameters influence the results.

# of Hidden Units: Figure 4a illustrates how the performance

varies with the number of hidden units of GRU network for

PDKT-C . From Figure 4a, we can find that PDKT-C has better

results when the number of hidden units is set to 16 or 32.

Hence, we set it as 32 in our experiments.

Parameter λ: Figure 4b illustrates how the performance of

PDKT-C varies with different values of λ. The results show

that PDKT-C achieves similar performance when λ is 0.001 or

0.01 or 0.1. By checking the exact value, we find that PDKT-

C performs slightly better when λ equals 0.01, so λ is set as

0.01.

Impact of training data size. The size of training data

usually has a great influence on model performance. In this

subsection, we elaborate how performance changes w.r.t. dif-

ferent numbers of training samples. Experiments are conducted

with different size of training data, namely 50%, 60%, 70%,

80%. Experimental results of the five datasets on the four

performance metrics are shown in Figure 5.

From the results, we can get two main observations. Firstly,

for all datasets, we can see that PDKT-C outperforms baseline

models on all sizes of training data. Secondly, the performance

difference between different training sizes are relatively small.

Even only 50% of the data is used for training, PDKT-C can

obtain good performance.

Impact of prerequisite number. Besides the the size of

training data, the number of prerequisites is another influential

factor. In this subsection, we further check the performance

change w.r.t. different number of prerequisites in each dataset.

More specifically, we conduct experiments with 20%, 40%,

60%, 80%, 100% of all prerequisites.

Figure 6 shows how the performance of different metrics

vary with the number of prerequisites used. With all the four

metrics, we can find that the performance of PDKT-C improves

with more prerequisites used, which verifies the effectiveness

of prerequisites in estimating students’ knowledge states.

VII. CONCLUSION AND FUTURE WORK

In this paper, we developed a new knowledge tracing model

PDKT-C to better estimate students’ knowledge states. The

intuition is to utilize prerequisite relations between concepts

to regularize knowledge tracing model. More specifically, by

considering how prerequisite relations affect students’ master-

ing concepts, we defined ordering pairs with the probability of

concept mastery. With a proper mathematical formulation, this

ordering pair formed mathematical constraints in knowledge

tracing model to better predict students’ knowledge states.

Finally, extensive experiments are conducted on five real world

datasets and the results show that the proposed PDKT-C model

generates a significant performance improvement comparing to

other baseline models.
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For the future work, we would like to explore other ways

to better express those concept interdependencies, for exam-

ple, graph embedding. In addition, we also would like to

jointly optimize the prerequisite relation extraction process

and knowledge tracing process to better identify prerequisite

relations and estimate students’ knowledge states.
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Trella, and Ricardo Conejo. Introducing prerequisite relations in a multi-
layered bayesian student model. In 10th International Conference of
User Modeling, pages 347–356, 2005.

[6] Ming-Wei Chang, Lev Ratinov, and Dan Roth. Structured learning
with constrained conditional models. Mach. Learn., 88(3):399–431,
September 2012.
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[24] Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. Injecting Logical
Background Knowledge into Embeddings for Relation Extraction. In
Conference of the North American Chapter of the Association for
Computational Linguistics Human Language Technologies (NAACL
HLT), 2015.

[25] Yu Su, Qingwen Liu, Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen,
Chris Ding, Si Wei, and Guoping Hu. Exercise-enhanced sequential
modeling for student performance prediction. In The 32nd AAAI
Conference on Artificial Intelligence, 2018.

[26] Nguyen Thai-Nghe, Lucas Drumond, Tomáš Horváth, Artus Krohn-
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